高一數(shù)學(xué)知識點(diǎn)總結(jié)
學(xué)習(xí)任何一門知識點(diǎn)都要學(xué)會對該知識點(diǎn)進(jìn)行總結(jié),這樣檢查學(xué)生對知識的真正掌握程度以及方便學(xué)生日后的復(fù)習(xí)。只有對一門知識有了較全面的把握才能做出對一份知識比價(jià)全面的總結(jié)。下面是應(yīng)屆畢業(yè)生小編為大家分享有關(guān)高一數(shù)學(xué)知識點(diǎn)總結(jié),歡迎大家閱讀與學(xué)習(xí)!
一丶函數(shù)的有關(guān)概念
1.函數(shù)的概念:設(shè)A、B是非空的數(shù)集,如果按照某個(gè)確定的對應(yīng)關(guān)系f,使對于集合A中的任意一個(gè)數(shù)x,在集合B中都有唯一確定的數(shù)f(x)和它對應(yīng),那么就稱f:A→B為從集合A到集合B的一個(gè)函數(shù).記作: y=f(x),x∈A.其中,x叫做自變量,x的取值范圍A叫做函數(shù)的定義域;與x的值相對應(yīng)的y值叫做函數(shù)值,函數(shù)值的集合{f(x)| x∈A }叫做函數(shù)的值域.
注意:
1.定義域:能使函數(shù)式有意義的實(shí)數(shù)x的集合稱為函數(shù)的定義域。
求函數(shù)的定義域時(shí)列不等式組的主要依據(jù)是:
(1)分式的分母不等于零;
(2)偶次方根的被開方數(shù)不小于零;
(3)對數(shù)式的真數(shù)必須大于零;
(4)指數(shù)、對數(shù)式的底必須大于零且不等于1.
(5)如果函數(shù)是由一些基本函數(shù)通過四則運(yùn)算結(jié)合而成的.那么,它的'定義域是使各部分都有意義的x的值組成的集合.
(6)指數(shù)為零底不可以等于零,
(7)實(shí)際問題中的函數(shù)的定義域還要保證實(shí)際問題有意義.
u 相同函數(shù)的判斷方法:①表達(dá)式相同(與表示自變量和函數(shù)值的字母無關(guān));②定義域一致 (兩點(diǎn)必須同時(shí)具備)
(見課本21頁相關(guān)例2)
2.值域 : 先考慮其定義域
(1)觀察法
(2)配方法
(3)代換法
3. 函數(shù)圖象知識歸納
(1)定義:在平面直角坐標(biāo)系中,以函數(shù) y=f(x) , (x∈A)中的x為橫坐標(biāo),函數(shù)值y為縱坐標(biāo)的點(diǎn)P(x,y)的集合C,叫做函數(shù) y=f(x),(x ∈A)的圖象.C上每一點(diǎn)的坐標(biāo)(x,y)均滿足函數(shù)關(guān)系y=f(x),反過來,以滿足y=f(x)的每一組有序?qū)崝?shù)對x、y為坐標(biāo)的點(diǎn)(x,y),均在C上 .
(2) 畫法
A、 描點(diǎn)法:
B、 圖象變換法
常用變換方法有三種
1) 平移變換
2) 伸縮變換
3) 對稱變換
4.區(qū)間的概念
(1)區(qū)間的分類:開區(qū)間、閉區(qū)間、半開半閉區(qū)間
(2)無窮區(qū)間
(3)區(qū)間的數(shù)軸表示.
5.映射
一般地,設(shè)A、B是兩個(gè)非空的集合,如果按某一個(gè)確定的對應(yīng)法則f,使對于集合A中的任意一個(gè)元素x,在集合B中都有唯
通過上面的高一數(shù)學(xué)必修1知識點(diǎn)總結(jié),同學(xué)已經(jīng)梳理了一遍高一數(shù)學(xué)必修1的知識點(diǎn),也加深了對該知識的更深了解,相信同學(xué)們一定能學(xué)好這部分知識點(diǎn),也希望同學(xué)們以后學(xué)習(xí)中多做總結(jié)。
【高一數(shù)學(xué)知識點(diǎn)總結(jié)】相關(guān)文章:
考研數(shù)學(xué)必備知識點(diǎn)總結(jié)01-18
初中數(shù)學(xué)知識點(diǎn)總結(jié)08-25
高一化學(xué)必修二知識點(diǎn)總結(jié)08-30
高一化學(xué)必修一知識點(diǎn)總結(jié)08-30
考研數(shù)學(xué)高數(shù)重要知識點(diǎn)總結(jié)12-25
初二數(shù)學(xué)上冊知識點(diǎn)總結(jié)08-26