- 相關(guān)推薦
初中數(shù)學(xué)學(xué)習(xí)方法常用15篇
在平平淡淡的學(xué)習(xí)、工作、生活中,大家都在努力的學(xué)習(xí),向自己的目標(biāo)前進(jìn),掌握一定的學(xué)習(xí)方法,學(xué)習(xí)效率就會提高很多。你知道都有哪些學(xué)方法嗎?以下是小編幫大家整理的初中數(shù)學(xué)學(xué)習(xí)方法,歡迎大家借鑒與參考,希望對大家有所幫助。
初中數(shù)學(xué)學(xué)習(xí)方法1
初中數(shù)學(xué)寒假學(xué)習(xí)技巧
1-寒假學(xué)習(xí)初中數(shù)學(xué),老師們建議要從課外資料進(jìn)行查漏補缺。
查漏補缺是無數(shù)老師都在強調(diào)的一種學(xué)習(xí)方法,特別是對于數(shù)學(xué)這門科目更是如此。寒假學(xué)習(xí)數(shù)學(xué),同學(xué)們一定要針對所學(xué)的內(nèi)容進(jìn)行查漏補缺。
從數(shù)學(xué)教材,筆記,課外資料,考試試卷以及錯題集等多種渠道去進(jìn)行查漏補缺,這樣才會更加的全面,才不會遺漏什么細(xì)節(jié)。一個學(xué)期學(xué)下來,存在一些不太明白的地方,這是一件很有正常的事情,如果在寒假學(xué)習(xí)當(dāng)中,什么都檢查不出來,這反而說明了同學(xué)們的查漏補缺工作做的非常不好。
2-寒假學(xué)習(xí)初中數(shù)學(xué),老師建議學(xué)生們要可以做一些數(shù)學(xué)難題。
星火教育初二數(shù)學(xué)輔導(dǎo)班涂老師就指出,進(jìn)入初二以后,數(shù)學(xué)難度開始加大,同學(xué)們不要覺得考試沒有考到什么難題,就覺得中考不會出現(xiàn),事實上,最近幾年我省各個地區(qū)中考數(shù)學(xué)試卷都出現(xiàn)了不少難度不小的難題,很多學(xué)生之所以學(xué)習(xí)成績考的不好,一個很大的原因就在于數(shù)學(xué)難題這個攔路虎。
因此,要想在未來中考數(shù)學(xué)考出更高的分?jǐn)?shù),同學(xué)們就要懂得利用寒假時間去攻略難題。
不要怕做什么,也不要總是去逃避難題,逃避只會讓你越來越懼怕難題,這樣反而會導(dǎo)致同學(xué)們看到難題,內(nèi)心就不敢去嘗試,這才是最可怕的。
3-寒假學(xué)習(xí)初中數(shù)學(xué),同學(xué)們做課外資料的時候,要懂得選擇性的去做題。
刷題當(dāng)然是數(shù)學(xué)學(xué)習(xí)的主題,為了能夠高效率的去學(xué)習(xí),為了能夠在有限時間內(nèi)去學(xué)習(xí)到更多有用的信息。因此在同學(xué)們寒假做課外資料的時候,同學(xué)們沒有必要在輔導(dǎo)資料上的所有題目都去做,而是可以選擇性的去做題,對于那些一看就是做的來的太簡單的題目是可以忽略的。
寒假初中數(shù)學(xué)學(xué)習(xí)方法
1、樹立整體目標(biāo)
在寒假期間復(fù)習(xí)的過程中,給自己樹立一個整體的目標(biāo)。比如通過一個假期的學(xué)習(xí),使自己的數(shù)學(xué)成績提高十分,或者二十分。目標(biāo)定好了,接下來我們就要進(jìn)行具體的分解,進(jìn)行整體分析,回顧下這個學(xué)期自己哪些知識點掌握的比較好,那些比較生疏甚至不會。那么就把重點放在這些薄弱環(huán)節(jié),如果和正方形相關(guān)的不熟練那就重點復(fù)習(xí)正方形這方面的知識,解方程不行就練習(xí)解方程。
2、重視課本的基礎(chǔ)知識
任何科目的學(xué)習(xí)都萬變不離其宗,數(shù)學(xué)也不例外,數(shù)學(xué)里面的這個“宗”,就是課本,因為所有的學(xué)習(xí)知識都來源于課本,考試的內(nèi)容有些高于課本,但是基礎(chǔ)知識點還是不會變化的,考試的試題就是課本知識的衍生物,要一點一點去挖掘試題背后的東西,找到其中要考試的重點部分。建議同學(xué)們在寒假期間復(fù)習(xí)數(shù)學(xué)的過程重要吃透課本的基礎(chǔ)知識。
3、做好練習(xí)題
寒假在提升數(shù)學(xué)成績的過程中,一定要做題。數(shù)學(xué)的復(fù)習(xí)一定是要配合上做題來進(jìn)行的',找一些往年期末考試的試卷做,或者自己買的資料老師發(fā)下來的試卷等等,最好是有參考答案的,這樣做完以后可以自己看看有沒有錯,很多的數(shù)學(xué)試卷答案只有一個答案,沒有解題過程,那就可以在網(wǎng)上搜,或者說問同學(xué)、問老師。
4、經(jīng)?偨Y(jié)反思
要想提高數(shù)學(xué)成績,一定要具備總結(jié)性思維,并且要經(jīng)常反思。做題時我們不能做了就扔,一定要學(xué)會解題后反思。如做錯的題,我們是卡住哪一個步驟,為什么答案中這道題這個步驟是這么寫的,為什么會用這個公式,公式的出現(xiàn)是為了解決什么問題等等,這些都是需要我們好好反思總結(jié)。反思題意,出題人的意圖,題目牽扯到哪些知識內(nèi)容;反思總結(jié)可以讓我們得到方法,深刻理解知識技能的運用,這樣自然做題就會越做越好。
初中數(shù)學(xué)的重難點
1、初一數(shù)學(xué)知識點
1)代數(shù)
2)有理數(shù):有理數(shù)的有關(guān)概念及性質(zhì),數(shù)軸、絕對值和相反數(shù)的全面掌握,有理數(shù)的運算(加減乘除、乘方以及混合運算)
3)整式: 整式的有關(guān)概念及性質(zhì),整式的運算,去括號(代數(shù)式運算中最常用、最基本的恒等變形),同類項、乘法公式、分解因式
4)方程(組):一元一次、二元一次方程組的解法;方程的有關(guān)應(yīng)用題(特別是行程、工程問題)
5)幾何
6)認(rèn)識圖形:圖形的變化、展開折疊、從三個方向看;★難點★點線面、正方體張開折疊、三視圖
7)直線形:相交線與平行線、三角形的有關(guān)概念、判定、性質(zhì),直線平行判定以及性質(zhì)、三角形全等判定以及性質(zhì)。
8)統(tǒng)計與概率:調(diào)查方法、統(tǒng)計圖、頻數(shù)分布直方圖、理解幾種事件、可能性;★難點★統(tǒng)計圖
2、初二數(shù)學(xué)知識點
1)代數(shù)
2)一元一次不等式(組):一元一次不等式的性質(zhì)、解法;★難點★變號
3)勾股定理:勾股定理的驗證與應(yīng)用,直角三角形的識別,應(yīng)用勾股定理求最近距離
4)分式:分式的值為零或有意義,分式的加減乘除混合運算,分式方程的解法和應(yīng)用,分式的混合運算與化簡
5)函數(shù)及其圖象:正、反比例函數(shù),一次的圖象和性質(zhì),幾者結(jié)合求解析式一、平面直角坐標(biāo)系。
6)幾何
7)相似形:相似三角形的判定和性質(zhì)
8)四邊形:四邊形的有關(guān)概念、判定、性質(zhì)。
9)圖形與證明(一):證明、命題
10)概率:等可能性、概率
3、初三數(shù)學(xué)知識點
1)代數(shù)
2)方程(組):一元二次方程及其解法;方程的有關(guān)應(yīng)用題(特別是行程、工程問題)
3)函數(shù)及其圖象:二次函數(shù)的圖象和性質(zhì)。
4)解直角三角形:解直角三角形
5)幾何
6)四邊形:相交線與平行線、三角形、四邊形的有關(guān)概念、判定、性質(zhì)。
7)圓:①圓的重要性質(zhì);②直線與圓、圓與圓的位置關(guān)系;③與圓有關(guān)的角的定理;④與圓有關(guān)的比例線段定理。
初中數(shù)學(xué)的寒假學(xué)習(xí)方法計劃
初中數(shù)學(xué)學(xué)習(xí)方法2
初中數(shù)學(xué)知識點總結(jié)及解法
基本知識
數(shù)與代數(shù)A、數(shù)與式:
1、有理數(shù)
有理數(shù):
、僬麛(shù)正整數(shù)/0/負(fù)整數(shù)
、诜?jǐn)?shù)正分?jǐn)?shù)/負(fù)分?jǐn)?shù)
數(shù)軸:
、佼嬕粭l水平直線,在直線上取一點表示0(原點),選取某一長度作為單位長度,規(guī)定直線上向右的方向為正方向,就得到數(shù)軸。
、谌魏我粋有理數(shù)都可以用數(shù)軸上的一個點來表示。
、廴绻麅蓚數(shù)只有符號不同,那么我們稱其中一個數(shù)為另外一個數(shù)的相反數(shù),也稱這兩個數(shù)互為相反數(shù)。在數(shù)軸上,表示互為相反數(shù)的兩個點,位于原點的兩側(cè),并且與原點距離相等。
、軘(shù)軸上兩個點表示的數(shù),右邊的總比左邊的大。正數(shù)大于0,負(fù)數(shù)小于0,正數(shù)大于負(fù)數(shù)。
絕對值:
、僭跀(shù)軸上,一個數(shù)所對應(yīng)的點與原點的距離叫做該數(shù)的絕對值。
、谡龜(shù)的絕對值是他的本身、負(fù)數(shù)的絕對值是他的相反數(shù)、0的絕對值是0。兩個負(fù)數(shù)比較大小,絕對值大的反而小。
有理數(shù)的運算:
加法:
、偻栂嗉,取相同的符號,把絕對值相加。
、诋愄栂嗉,絕對值相等時和為0;絕對值不等時,取絕對值較大的數(shù)的符號,并用較大的絕對值減去較小的絕對值。
③一個數(shù)與0相加不變。
減法:減去一個數(shù),等于加上這個數(shù)的相反數(shù)。
乘法:
、賰蓴(shù)相乘,同號得正,異號得負(fù),絕對值相乘。
②任何數(shù)與0相乘得0。
、鄢朔e為1的兩個有理數(shù)互為倒數(shù)。
除法:
、俪砸粋數(shù)等于乘以一個數(shù)的倒數(shù)。
②0不能作除數(shù)。
乘方:求N個相同因數(shù)A的積的運算叫做乘方,乘方的結(jié)果叫冪,A叫底數(shù),N叫次數(shù)。
混合順序:先算乘法,再算乘除,最后算加減,有括號要先算括號里的。
2、實數(shù)
無理數(shù):無限不循環(huán)小數(shù)叫無理數(shù)
平方根:
、偃绻粋正數(shù)X的平方等于A,那么這個正數(shù)X就叫做A的算術(shù)平方根。
、谌绻粋數(shù)X的平方等于A,那么這個數(shù)X就叫做A的平方根。
、垡粋正數(shù)有2個平方根/0的平方根為0/負(fù)數(shù)沒有平方根。
、芮笠粋數(shù)A的平方根運算,叫做開平方,其中A叫做被開方數(shù)。
立方根:
、偃绻粋數(shù)X的立方等于A,那么這個數(shù)X就叫做A的立方根。
、谡龜(shù)的立方根是正數(shù)、0的立方根是0、負(fù)數(shù)的立方根是負(fù)數(shù)。
、矍笠粋數(shù)A的立方根的運算叫開立方,其中A叫做被開方數(shù)。
實數(shù):
、賹崝(shù)分有理數(shù)和無理數(shù)。
、谠趯崝(shù)范圍內(nèi),相反數(shù),倒數(shù),絕對值的意義和有理數(shù)范圍內(nèi)的相反數(shù),倒數(shù),絕對值的意義完全一樣。
、勖恳粋實數(shù)都可以在數(shù)軸上的一個點來表示。
3、代數(shù)式
代數(shù)式:單獨一個數(shù)或者一個字母也是代數(shù)式。
合并同類項:①所含字母相同,并且相同字母的指數(shù)也相同的項,叫做同類項。②把同類項合并成一項就叫做合并同類項。③在合并同類項時,我們把同類項的系數(shù)相加,字母和字母的指數(shù)不變。
4、整式與分式
整式:
、贁(shù)與字母的乘積的代數(shù)式叫單項式,幾個單項式的和叫多項式,單項式和多項式統(tǒng)稱整式。
、谝粋單項式中,所有字母的指數(shù)和叫做這個單項式的次數(shù)。
、垡粋多項式中,次數(shù)最高的項的次數(shù)叫做這個多項式的次數(shù)。
整式運算:加減運算時,如果遇到括號先去括號,再合并同類項。
冪的運算:
、 同底數(shù)冪相乘:a^ma^n=a^(m+n)
、 冪的乘方:(a^m)n=a^mn
、 積的乘方:(ab)^m=a^mb^m
④ 同底數(shù)冪相除:a^ma^n=a^(m-n) (a0)
這些公式也可以這樣用:⑤a^(m+n)= a^ma^n
、轪^mn=(a^m)n
、遖^mb^m=(ab)^m
、 a^(m-n)= a^ma^n (a0)
整式的乘法:
、賳雾検脚c單項式相乘,把他們的系數(shù),相同字母的冪分別相乘,其余字母連同他的指數(shù)不變,作為積的因式。
、趩雾検脚c多項式相乘,就是根據(jù)分配律用單項式去乘多項式的每一項,再把所得的積相加。
、鄱囗検脚c多項式相乘,先用一個多項式的每一項乘另外一個多項式的每一項,再把所得的積相加。
公式兩條:平方差公式/完全平方公式
整式的除法:
、賳雾検较喑,把系數(shù),同底數(shù)冪分別相除后,作為商的因式;對于只在被除式里含有的字母,則連同他的指數(shù)一起作為商的一個因式。
、诙囗検匠詥雾検剑劝堰@個多項式的每一項分別除以單項式,再把所得的商相加。
分解因式:把一個多項式化成幾個整式的積的形式,這種變化叫做把這個多項式分解因式。
方法:提公因式法、運用公式法、分組分解法、十字相乘法。
分式:①整式A除以整式B,如果除式B中含有分母,那么這個就是分式,對于任何一個分式,分母不為0。②分式的分子與分母同乘以或除以同一個不等于0的整式,分式的值不變。
分式的運算:
乘法:把分子相乘的積作為積的分子,把分母相乘的積作為積的分母。
除法:除以一個分式等于乘以這個分式的倒數(shù)。
加減法:
①同分母分式相加減,分母不變,把分子相加減。
、诋惙帜傅姆质较韧ǚ,化為同分母的分式,再加減。
分式方程:
、俜帜钢泻形粗獢(shù)的方程叫分式方程。
、谑狗匠痰姆帜笧0的解稱為原方程的增根。
方程與不等式
1、方程與方程組
一元一次方程:
、僭谝粋方程中,只含有一個未知數(shù),并且未知數(shù)的指數(shù)是1,這樣的方程叫一元一次方程。
、诘仁絻蛇呁瑫r加上或減去或乘以或除以(不為0)一個代數(shù)式,所得結(jié)果仍是等式。
解一元一次方程的步驟:去分母,移項,合并同類項,未知數(shù)系數(shù)化為1。
二元一次方程:含有兩個未知數(shù),并且所含未知數(shù)的`項的次數(shù)都是1的方程叫做二元一次方程。
二元一次方程組:兩個二元一次方程組成的方程組叫做二元一次方程組。
適合一個二元一次方程的一組未知數(shù)的值,叫做這個二元一次方程的一個解。
二元一次方程組中各個方程的公共解,叫做這個二元一次方程的解。
解二元一次方程組的方法:代入消元法/加減消元法。
一元二次方程:只有一個未知數(shù),并且未知數(shù)的項的最高系數(shù)為2的方程
1、一元二次方程的二次函數(shù)的關(guān)系
大家已經(jīng)學(xué)過二次函數(shù)(即拋物線)了,對它也有很深的了解,在圖象中表示等等,其實一元二次方程也可以用二次函數(shù)來表示,其實一元二次方程也是二次函數(shù)的一個特殊情況,就是當(dāng)Y的0的時候就構(gòu)成了一元二次方程了。那如果在平面直角坐標(biāo)系中表示出來,一元二次方程就是二次函數(shù)中,圖象與X軸的交點。也就是該方程的解了。
2、一元二次方程的解法
大家知道,二次函數(shù)有頂點式(,),這大家要記住,很重要,因為在上面已經(jīng)說過了,一元二次方程也是二次函數(shù)的一部分,所以他也有自己的一個解法,利用他可以求出所有的一元一次方程的解。
(1)配方法
利用配方,使方程變?yōu)橥耆椒焦剑谟弥苯娱_平方法去求出解。
(2)分解因式法
提取公因式,套用公式法,和十字相乘法。在解一元二次方程的時候也一樣,利用這點,把方程化為幾個乘積的形式去解。
(3)公式法
這方法也可以是在解一元二次方程的萬能方法了,方程的根X1={-b+[b2-4ac)]}/2a,X2={-b-[b2-4ac)]}/2a
3、解一元二次方程的步驟:
(1)配方法的步驟:
先把常數(shù)項移到方程的右邊,再把二次項的系數(shù)化為1,再同時加上1次項的系數(shù)的一半的平方,最后配成完全平方公式。
(2)分解因式法的步驟:
把方程右邊化為0,然后看看是否能用提取公因式,公式法(這里指的是分解因式中的公式法)或十字相乘,如果可以,就可以化為乘積的形式。
(3)公式法
就把一元二次方程的各系數(shù)分別代入,這里二次項的系數(shù)為a,一次項的系數(shù)為b,常數(shù)項的系數(shù)為c。
4、韋達(dá)定理
利用韋達(dá)定理去了解,韋達(dá)定理就是在一元二次方程中,二根之和=,二根之積=
也可以表示為x1+x2=,x1x2=。利用韋達(dá)定理,可以求出一元二次方程中的各系數(shù),在題目中很常用。
5、一元一次方程根的情況
利用根的判別式去了解,根的判別式可在書面上可以寫為△,讀作diao ta,而△=b2-4ac,這里可以分為3種情況:
I當(dāng)△0時,一元二次方程有2個不相等的實數(shù)根;
II當(dāng)△=0時,一元二次方程有2個相同的實數(shù)根;
III當(dāng)△0時,一元二次方程沒有實數(shù)根(在這里,學(xué)到高中就會知道,這里有2個虛數(shù)根)。
2、不等式與不等式組
不等式:
、儆梅枴,=,〈號連接的式子叫不等式。
②不等式的兩邊都加上或減去同一個整式,不等號的方向不變。
、鄄坏仁降膬蛇叾汲艘曰蛘叱砸粋正數(shù),不等號方向不變。
④不等式的兩邊都乘以或除以同一個負(fù)數(shù),不等號方向相反。
不等式的解集:
、倌苁共坏仁匠闪⒌奈粗獢(shù)的值,叫做不等式的解。
、谝粋含有未知數(shù)的不等式的所有解,組成這個不等式的解集。
、矍蟛坏仁浇饧倪^程叫做解不等式。
一元一次不等式:左右兩邊都是整式,只含有一個未知數(shù),且未知數(shù)的最高次數(shù)是1的不等式叫一元一次不等式。
一元一次不等式組:
、訇P(guān)于同一個未知數(shù)的幾個一元一次不等式合在一起,就組成了一元一次不等式組。
②一元一次不等式組中各個不等式的解集的公共部分,叫做這個一元一次不等式組的解集。
③求不等式組解集的過程,叫做解不等式組。
一元一次不等式的符號方向:
在一元一次不等式中,不像等式那樣,等號是不變的,他是隨著你加或乘的運算改變。
在不等式中,如果加上同一個數(shù)(或加上一個正數(shù)),不等式符號不改向;例如:AB,A+CB+C
在不等式中,如果減去同一個數(shù)(或加上一個負(fù)數(shù)),不等式符號不改向;例如:AB,A-CB-C
在不等式中,如果乘以同一個正數(shù),不等號不改向;例如:AB,A*CB*C(C0)
在不等式中,如果乘以同一個負(fù)數(shù),不等號改向;例如:AB,A*C
如果不等式乘以0,那么不等號改為等號
所以在題目中,要求出乘以的數(shù),那么就要看看題中是否出現(xiàn)一元一次不等式,如果出現(xiàn)了,那么不等式乘以的數(shù)就不等為0,否則不等式不成立。
函數(shù)
變量:因變量,自變量。
在用圖象表示變量之間的關(guān)系時,通常用水平方向的數(shù)軸上的點自變量,用豎直方向的數(shù)軸上的點表示因變量。
一次函數(shù):
、偃魞蓚變量X,Y間的關(guān)系式可以表示成Y=KX+B(B為常數(shù),K不等于0)的形式,則稱Y是X的一次函數(shù)。
、诋(dāng)B=0時,稱Y是X的正比例函數(shù)。
一次函數(shù)的圖象:①把一個函數(shù)的自變量X與對應(yīng)的因變量Y的值分別作為點的橫坐標(biāo)與縱坐標(biāo),在直角坐標(biāo)系內(nèi)描出它的對應(yīng)點,所有這些點組成的圖形叫做該函數(shù)的圖象。②正比例函數(shù)Y=KX的圖象是經(jīng)過原點的一條直線。③在一次函數(shù)中,當(dāng)K〈0,B〈O,則經(jīng)234象限;當(dāng)K〈0,B〉0時,則經(jīng)124象限;當(dāng)K〉0,B〈0時,則經(jīng)134象限;當(dāng)K〉0,B〉0時,則經(jīng)123象限。④當(dāng)K〉0時,Y的值隨X值的增大而增大,當(dāng)X〈0時,Y的值隨X值的增大而減少。
空間與圖形
圖形的認(rèn)識
1、點,線,面
點,線,面:
①圖形是由點,線,面構(gòu)成的。
、诿媾c面相交得線,線與線相交得點。
③點動成線,線動成面,面動成體。
展開與折疊:
①在棱柱中,任何相鄰的兩個面的交線叫做棱,側(cè)棱是相鄰兩個側(cè)面的交線,棱柱的所有側(cè)棱長相等,棱柱的上下底面的形狀相同,側(cè)面的形狀都是長方體。
、贜棱柱就是底面圖形有N條邊的棱柱。
截一個幾何體:用一個平面去截一個圖形,截出的面叫做截面。
視圖:主視圖,左視圖,俯視圖。
多邊形:他們是由一些不在同一條直線上的線段依次首尾相連組成的封閉圖形。
弧、扇形:
、儆梢粭l弧和經(jīng)過這條弧的端點的兩條半徑所組成的圖形叫扇形。
、趫A可以分割成若干個扇形。
角
線:
、倬段有兩個端點。
②將線段向一個方向無限延長就形成了射線。射線只有一個端點。
、蹖⒕段的兩端無限延長就形成了直線。直線沒有端點。
、芙(jīng)過兩點有且只有一條直線。
比較長短:
、賰牲c之間的所有連線中,線段最短。
、趦牲c之間線段的長度,叫做這兩點之間的距離。
角的度量與表示:
①角由兩條具有公共端點的射線組成,兩條射線的公共端點是這個角的頂點。
、谝欢鹊1/60是一分,一分的1/60是一秒。
角的比較:
①角也可以看成是由一條射線繞著他的端點旋轉(zhuǎn)而成的。
、谝粭l射線繞著他的端點旋轉(zhuǎn),當(dāng)終邊和始邊成一條直線時,所成的角叫做平角。始邊繼續(xù)旋轉(zhuǎn),當(dāng)他又和始邊重合時,所成的角叫做周角。
③從一個角的頂點引出的一條射線,把這個角分成兩個相等的角,這條射線叫做這個角的平分線。
平行:
、偻黄矫鎯(nèi),不相交的兩條直線叫做平行線。
、诮(jīng)過直線外一點,有且只有一條直線與這條直線平行。
③如果兩條直線都與第3條直線平行,那么這兩條直線互相平行。
垂直:
、偃绻麅蓷l直線相交成直角,那么這兩條直線互相垂直。
、诨ハ啻怪钡膬蓷l直線的交點叫做垂足。
③平面內(nèi),過一點有且只有一條直線與已知直線垂直。
垂直平分線:垂直和平分一條線段的直線叫垂直平分線。
垂直平分線垂直平分的一定是線段,不能是射線或直線,這根據(jù)射線和直線可以無限延長有關(guān),再看后面的,垂直平分線是一條直線,所以在畫垂直平分線的時候,確定了2點后(關(guān)于畫法,后面會講)一定要把線段穿出2點。
垂直平分線定理:
性質(zhì)定理:在垂直平分線上的點到該線段兩端點的距離相等;
判定定理:到線段2端點距離相等的點在這線段的垂直平分線上
角平分線:把一個角平分的射線叫該角的角平分線。
定義中有幾個要點要注意一下的,就是角的角平分線是一條射線,不是線段也不是直線,很多時,在題目中會出現(xiàn)直線,這是角平分線的對稱軸才會用直線的,這也涉及到軌跡的問題,一個角個角平分線就是到角兩邊距離相等的點
性質(zhì)定理:角平分線上的點到該角兩邊的距離相等
判定定理:到角的兩邊距離相等的點在該角的角平分線上
正方形:一組鄰邊相等的矩形是正方形
性質(zhì):正方形具有平行四邊形、菱形、矩形的一切性質(zhì)
判定:
1、對角線相等的菱形
2、鄰邊相等的矩形
基本方法
1、配方法
所謂配方,就是把一個解析式利用恒等變形的方法,把其中的某些項配成一個或幾個多項式正整數(shù)次冪的和形式。通過配方解決數(shù)學(xué)問題的方法叫配方法。其中,用的最多的是配成完全平方式。配方法是數(shù)學(xué)中一種重要的恒等變形的方法,它的應(yīng)用十分非常廣泛,在因式分解、化簡根式、解方程、證明等式和不等式、求函數(shù)的極值和解析式等方面都經(jīng)常用到它。
2、因式分解法
因式分解,就是把一個多項式化成幾個整式乘積的形式。因式分解是恒等變形的基礎(chǔ),它作為數(shù)學(xué)的一個有力工具、一種數(shù)學(xué)方法在代數(shù)、幾何、三角等的解題中起著重要的作用。因式分解的方法有許多,除中學(xué)課本上介紹的提取公因式法、公式法、分組分解法、十字相乘法等外,還有如利用拆項添項、求根分解、換元、待定系數(shù)等等。
3、換元法
換元法是數(shù)學(xué)中一個非常重要而且應(yīng)用十分廣泛的解題方法。我們通常把未知數(shù)或變數(shù)稱為元,所謂換元法,就是在一個比較復(fù)雜的數(shù)學(xué)式子中,用新的變元去代替原式的一個部分或改造原來的式子,使它簡化,使問題易于解決。
4、判別式法與韋達(dá)定理
一元二次方程ax2+bx+c=0(a、b、c屬于R,a0)根的判別,△=b2-4ac,不僅用來判定根的性質(zhì),而且作為一種解題方法,在代數(shù)式變形,解方程(組),解不等式,研究函數(shù)乃至幾何、三角運算中都有非常廣泛的應(yīng)用。
韋達(dá)定理除了已知一元二次方程的一個根,求另一根;已知兩個數(shù)的和與積,求這兩個數(shù)等簡單應(yīng)用外,還可以求根的對稱函數(shù),計論二次方程根的符號,解對稱方程組,以及解一些有關(guān)二次曲線的問題等
5、待定系數(shù)法
在解數(shù)學(xué)問題時,若先判斷所求的結(jié)果具有某種確定的形式,其中含有某些待定的系數(shù),而后根據(jù)題設(shè)條件列出關(guān)于待定系數(shù)的等式,最后解出這些待定系數(shù)的值或找到這些待定系數(shù)間的某種關(guān)系,從而解答數(shù)學(xué)問題,這種解題方法稱為待定系數(shù)法。它是中學(xué)數(shù)學(xué)中常用的方法之一。
6、構(gòu)造法
在解題時,我們常常會采用這樣的方法,通過對條件和結(jié)論的分析,構(gòu)造輔助元素,它可以是一個圖形、一個方程(組)、一個等式、一個函數(shù)、一個等價命題等,架起一座連接條件和結(jié)論的橋梁,從而使問題得以解決,這種解題的數(shù)學(xué)方法,我們稱為構(gòu)造法。運用構(gòu)造法解題,可以使代數(shù)、三角、幾何等各種數(shù)學(xué)知識互相滲透,有利于問題的解決。
7、反證法
反證法是一種間接證法,它是先提出一個與命題的結(jié)論相反的假設(shè),然后,從這個假設(shè)出發(fā),經(jīng)過正確的推理,導(dǎo)致矛盾,從而否定相反的假設(shè),達(dá)到肯定原命題正確的一種方法。反證法可以分為歸謬反證法(結(jié)論的反面只有一種)與窮舉反證法(結(jié)論的反面不只一種)。用反證法證明一個命題的步驟,大體上分為:(1)反設(shè);(2)歸謬;(3)結(jié)論。
反設(shè)是反證法的基礎(chǔ),為了正確地作出反設(shè),掌握一些常用的互為否定的表述形式是有必要的,例如:是、不是;存在、不存在;平行于、不平行于;垂直于、不垂直于;等于、不等于;大(小)于、不大(小)于;都是、不都是;至少有一個、一個也沒有;至少有n個、至多有(n一1)個;至多有一個、至少有兩個;唯一、至少有兩個。
歸謬是反證法的關(guān)鍵,導(dǎo)出矛盾的過程沒有固定的模式,但必須從反設(shè)出發(fā),否則推導(dǎo)將成為無源之水,無本之木。推理必須嚴(yán)謹(jǐn)。導(dǎo)出的矛盾有如下幾種類型:與已知條件矛盾;與已知的公理、定義、定理、公式矛盾;與反設(shè)矛盾;自相矛盾。
8、面積法
平面幾何中講的面積公式以及由面積公式推出的與面積計算有關(guān)的性質(zhì)定理,不僅可用于計算面積,而且用它來證明平面幾何題有時會收到事半功倍的效果。運用面積關(guān)系來證明或計算平面幾何題的方法,稱為面積方法,它是幾何中的一種常用方法。
用歸納法或分析法證明平面幾何題,其困難在添置輔助線。面積法的特點是把已知和未知各量用面積公式聯(lián)系起來,通過運算達(dá)到求證的結(jié)果。所以用面積法來解幾何題,幾何元素之間關(guān)系變成數(shù)量之間的關(guān)系,只需要計算,有時可以不添置補助線,即使需要添置輔助線,也很容易考慮到。
9、幾何變換法
在數(shù)學(xué)問題的研究中,常常運用變換法,把復(fù)雜性問題轉(zhuǎn)化為簡單性的問題而得到解決。所謂變換是一個**的任一元素到同一**的元素的一個一一映射。中學(xué)數(shù)學(xué)中所涉及的變換主要是初等變換。有一些看來很難甚至于無法下手的習(xí)題,可以借助幾何變換法,化繁為簡,化難為易。另一方面,也可將變換的觀點滲透到中學(xué)數(shù)學(xué)教學(xué)中。將圖形從相等靜止條件下的研究和運動中的研究結(jié)合起來,有利于對圖形本質(zhì)的認(rèn)識。
幾何變換包括:
(1)平移;
(2)旋轉(zhuǎn);
(3)對稱。
10、客觀性題的解題方法
選擇題是給出條件和結(jié)論,要求根據(jù)一定的關(guān)系找出正確答案的一類題型。選擇題的題型構(gòu)思精巧,形式靈活,可以比較全面地考察學(xué)生的基礎(chǔ)知識和基本技能,從而增大了試卷的容量和知識覆蓋面。
填空題是標(biāo)準(zhǔn)化考試的重要題型之一,它同選擇題一樣具有考查目標(biāo)明確,知識復(fù)蓋面廣,評卷準(zhǔn)確迅速,有利于考查學(xué)生的分析判斷能力和計算能力等優(yōu)點,不同的是填空題未給出答案,可以防止學(xué)生猜估答案的情況。
要想迅速、正確地解選擇題、填空題,除了具有準(zhǔn)確的計算、嚴(yán)密的推理外,還要有解選擇題、填空題的方法與技巧。下面通過實例介紹常用方法。
(1)直接推演法:直接從命題給出的條件出發(fā),運用概念、公式、定理等進(jìn)行推理或運算,得出結(jié)論,選擇正確答案,這就是傳統(tǒng)的解題方法,這種解法叫直接推演法。
(2)驗證法:由題設(shè)找出合適的驗證條件,再通過驗證,找出正確答案,亦可將供選擇的答案代入條件中去驗證,找出正確答案,此法稱為驗證法(也稱代入法)。當(dāng)遇到定量命題時,常用此法。
(3)特殊元素法:用合適的特殊元素(如數(shù)或圖形)代入題設(shè)條件或結(jié)論中去,從而獲得解答。這種方法叫特殊元素法。
(4)排除、篩選法:對于正確答案有且只有一個的選擇題,根據(jù)數(shù)學(xué)知識或推理、演算,把不正確的結(jié)論排除,余下的結(jié)論再經(jīng)篩選,從而作出正確的結(jié)論的解法叫排除、篩選法。
(5)圖解法:借助于符合題設(shè)條件的圖形或圖象的性質(zhì)、特點來判斷,作出正確的選擇稱為圖解法。圖解法是解選擇題常用方法之一。
(6)分析法:直接通過對選擇題的條件和結(jié)論,作詳盡的分析、歸納和判斷,從而選出正確的結(jié)果,為分析法。
初中數(shù)學(xué)學(xué)習(xí)方法3
多做練習(xí)。
要想學(xué)好數(shù)學(xué),必須多做練習(xí),但有的同學(xué)多做練習(xí)能學(xué)好,有的同學(xué)做了很多練習(xí)仍舊學(xué)不好,究其因,是“多做練習(xí)”是否得法的問題,我們所說的“多做練習(xí)”,不是搞“題海戰(zhàn)術(shù)”。后者只做不思,不能起到鞏固概念,拓寬思路的作用,而且有“副作用”:把已學(xué)過的知識攪得一塌糊涂,理不出頭緒,浪費時間又收獲不大,我們所說的“多做練習(xí)”,是要大家在做了一道新穎的題目之后,多想一想:它究竟用到了哪些知識,是否可以多解,其結(jié)論是否還可以加強、推廣,等等,還要真正掌握方法,切實做到以下三點,才能使“多做練習(xí)”真正發(fā)揮它的作用。
必須熟悉各種基本題型并掌握其解法。
課本上的每一道練習(xí)題,都是針對一個知識點出的,是最基本的題目,必須熟練掌握;課外的習(xí)題,也有許多基本題型,其運用方法較多,針對性也強,應(yīng)該能夠迅速做出。
許多綜合題只是若干個基本題的有機(jī)結(jié)合,基本題掌握了,不愁解不了它們。
在解題過程中有意識地注重題目所體現(xiàn)的出的思維方法,以形成正確的思維定勢。
數(shù)學(xué)是思維的世界,有著眾多思維的技巧,所以每道題在命題、解題過程中,都會反映出一定的思維方法,如果我們有意識地注重這些思維方法,時間長了頭腦中便形成了對每一類題型的“通用”解法,即正確的思維定勢,這時在解這一類的題目時就易如反掌了;同時,掌
握了更多的'思維方法,為做綜合題奠定了一定的基礎(chǔ)。
多做綜合題。
綜合題,由于用到的知識點較多,頗受命題人青睞。
做綜合題也是檢驗自己學(xué)習(xí)成效的有力工具,通過做綜合題,可以知道自己的不足所在,彌補不足,使自己的數(shù)學(xué)水平不斷提高。
“多做練習(xí)”要長期堅持,每天都要做幾道,時間長了才會有明顯的效果和較大的收獲,相信大家是沒問題的吧。
中小學(xué)數(shù)學(xué)公式大全之追及問題
同學(xué)們認(rèn)真看看,下面是老師對數(shù)學(xué)中關(guān)于追及問題公式的講解,希望同學(xué)們很好的掌握。
追及問題
追及距離=速度差×追及時間
追及時間=追及距離÷速度差
速度差=追及距離÷追及時間
相信上面對數(shù)學(xué)中追及問題的相關(guān)公式知識已經(jīng)很好的掌握了吧,希望同學(xué)們在考試中取得優(yōu)異成績哦,加油吧!
中小學(xué)數(shù)學(xué)公式大全之流水問題
下面是對數(shù)學(xué)中,關(guān)于流水問題的公式內(nèi)容講解,相信同學(xué)們會從中學(xué)習(xí)的更好的吧。
流水問題
順流速度=靜水速度+水流速度
逆流速度=靜水速度-水流速度
靜水速度=(順流速度+逆流速度)÷2
水流速度=(順流速度-逆流速度)÷2
以上對數(shù)學(xué)中流水問題知識的內(nèi)容講解學(xué)習(xí),希望可以給同學(xué)們的學(xué)習(xí)很好的幫助,預(yù)祝大家在考試中取得優(yōu)異成績哦。
初中數(shù)學(xué)學(xué)習(xí)方法4
學(xué)習(xí)中的“讀”
現(xiàn)代社會已進(jìn)入信息化時代,要求人們不僅要“學(xué)會”,更要“會學(xué)”!皶䦟W(xué)”的基礎(chǔ)當(dāng)是會“讀”,包括:
1.1讀教材是學(xué)生學(xué)習(xí)數(shù)學(xué)的主要材料,它是數(shù)學(xué)課程教材編制專家在充分考慮學(xué)生生理心理特征、教育教學(xué)質(zhì)量、數(shù)學(xué)學(xué)科特點等眾多因素的基礎(chǔ)上精心編寫而成的,具有極高的閱讀價值。讀教材包括課前、課堂、課后三個環(huán)節(jié)。課前讀教材屬于了解教材內(nèi)容,發(fā)現(xiàn)疑難問題;課堂讀教材則能更深刻地理解教材內(nèi)容,掌握有關(guān)知識點;課后讀教材是對前面兩個環(huán)節(jié)的深化和拓展,達(dá)到對教材內(nèi)容的全面、系統(tǒng)的理解和掌握。
1.2讀書刊 除讀教材外,學(xué)生應(yīng)廣泛閱讀課外讀物,如上海教育出版社出版的“初、高中學(xué)生數(shù)學(xué)課外閱讀系列”叢書、《中學(xué)生數(shù)學(xué)》雜志等。即如讀報也不僅能使學(xué)生關(guān)心國內(nèi)外大事,也能使學(xué)生關(guān)注我們?nèi)粘I钪械臄?shù)學(xué),捕捉身邊的數(shù)學(xué)信息,體會數(shù)學(xué)的`價值,了解數(shù)學(xué)研究的動態(tài)。然而,與各種各樣的復(fù)習(xí)資料、習(xí)題集相比,滲透現(xiàn)代科技的高質(zhì)量的數(shù)學(xué)課外讀物實在太少了。
數(shù)學(xué)學(xué)習(xí)中的“讀”,不同于讀小說書,常需紙筆演算推理來“架橋鋪路”,還需大腦建起靈活的語言轉(zhuǎn)化機(jī)制。
數(shù)學(xué)學(xué)習(xí)中的“聽”
1 聽老師上課主要是聽老師上課的思路,即發(fā)現(xiàn)問題、明確問題、提出假設(shè)、檢驗假設(shè)的思維過程。既要聽老師講解、分析、發(fā)揮時的每一句話,更要抓住重點,聽好關(guān)鍵性的步驟,概括性的敘述。特別是自己讀教材時發(fā)現(xiàn)或產(chǎn)生的疑難問題。
2 聽同學(xué)發(fā)言 傾聽和接受他人的數(shù)學(xué)思想和方法,不僅是聽老師上課,也包括聽同學(xué)的發(fā)言。同學(xué)間的思想交流更能引起共鳴。從中可以了解其他同學(xué)學(xué)習(xí)數(shù)學(xué)和思考問題的方法,加之老師適時的點撥和評價,有利于自己開闊思路、激發(fā)思考、澄清思維、引起反思。學(xué)會傾聽老師和同學(xué)的意見,反思自己的想法,有助于發(fā)展學(xué)生良好的個性,培養(yǎng)團(tuán)結(jié)協(xié)作的精神,增強群體凝聚力。
初中數(shù)學(xué)學(xué)習(xí)方法5
一、初中學(xué)生的幾何證明學(xué)習(xí)現(xiàn)狀
1、怕
2、審題不仔細(xì)
3、數(shù)學(xué)用語、書寫不規(guī)范。
4、思維跳躍,邏輯混亂。
5、有的性質(zhì)定理記不住,即使記住了到用的時候又不知該用哪個。
6、兩級分化嚴(yán)重
二、造成學(xué)生幾何證明題學(xué)習(xí)困難的原因
(一)教師的原因:
一開始就過分強調(diào)嚴(yán)密、抽象、困難,過分強調(diào)演繹推理,抬高了幾何的門檻,更加大了學(xué)生的入門語言掌握難度。沒有很好地引導(dǎo)學(xué)生人門,把學(xué)生嚇退在幾何的門外。加之個別教師不善于聯(lián)系實際,漠視周圍豐富的幾何素材,從書本到書本,枯燥無味,使學(xué)生缺少將所學(xué)知識與現(xiàn)實生活緊密聯(lián)系的機(jī)會,使學(xué)生的空間觀念、空間想象能力的形成和培養(yǎng)受到相當(dāng)大的限制。更有一些教師受條件限制不能或不會利用多媒體等先進(jìn)教育技術(shù),沒有設(shè)計豐富多樣的數(shù)學(xué)活動,不善于把幾何知識講活,講出趣味性,教得太死,扼制了學(xué)生的`思維發(fā)展。
(二)學(xué)生的原因:
第一,沒有解決好“入門”問題。小學(xué)階段對一些簡單圖形性質(zhì)的認(rèn)識,往往是通過觀察和實驗,對一些圖形的研究也僅僅側(cè)重于面積和體積的計算。在思維方法上以形象思維為主。在初中幾何學(xué)習(xí)中,雖然圖形直觀能對尋找解體方法有所啟示,然而,單憑形象思維不能解決幾何問題。
第二,沒有過好幾何的語言關(guān)。幾何語言有點類似文言文。用通常語言人人都會表述的事情,卻被幾何語言弄得很別扭。例如“怎樣比較兩條線段的大小”,基本做法其實人人都會,就是把它們的“一端對齊,看另一端”。但對幾何教科書上的敘述:“把線段A'B'移到AB上,使A'與A重合,A'B'順著AB落下,這時如果B'落在點A和點B之間,就說線段A'B'小于線段AB,記作A'A'
第三,沒有體會到成功的愉悅。事實上,成功和進(jìn)步是可以帶來信心的。一道幾何題證出來后,學(xué)生會感到很高興,很自豪,很有信心。然而,并不是每一個學(xué)生在學(xué)習(xí)幾何初期都能體會到的。大多數(shù)學(xué)生只有一籌莫展的痛苦因而失去自信。
第四,概念多,記憶有困難。在平面幾何概念的學(xué)習(xí)中,如果學(xué)生對自己學(xué)習(xí)知識的概念的形成過程不了解,沒有能力開發(fā)和完善自己的學(xué)習(xí)策略,那就只能死記硬背和生搬硬套定義,結(jié)果是一知半解,似懂非懂,造成感知與概括之間的思維斷層。
知識拓展:由于證明的難度,有的教師為了讓學(xué)生以后在學(xué)習(xí)過程中能夠掌握嚴(yán)謹(jǐn)?shù)膸缀握Z言表述,在初一階段就讓學(xué)生寫出嚴(yán)謹(jǐn)?shù)淖C明過程。
初中數(shù)學(xué)學(xué)習(xí)方法6
1、課前認(rèn)真預(yù)習(xí)。預(yù)習(xí)的目的是為了能更好得聽老師講課,通過預(yù)習(xí),掌握度要達(dá)到百分之八十。帶著預(yù)習(xí)中不明白的問題去聽老師講課,來解答這類的問題.預(yù)習(xí)還可以使聽課的整體效率提高。具體的預(yù)習(xí)方法:將書上的題目做完,畫出知識點,整個過程大約持續(xù)15-20分鐘。在時間允許的情況下,還可以將練習(xí)冊做完。
2、讓數(shù)學(xué)課學(xué)與練結(jié)合。在數(shù)學(xué)課上,光聽是沒用的。當(dāng)老師讓同學(xué)去黑板上演算時,自己也要在草稿紙上練。如果遇到不懂的難題,一定要提出來,不能不求甚解。否則考試遇到類似的題目就可能不會做.聽老師講課時一定要全神貫注,要注意細(xì)節(jié)問題,否則“千里之堤,毀于蟻穴”。
3、課后及時復(fù)習(xí)。寫完作業(yè)后對當(dāng)天老師講的.內(nèi)容進(jìn)行梳理,可以適當(dāng)?shù)刈?5分鐘左右的課外題?梢愿鶕(jù)自己的需要選擇適合自己的課外書.其課外題內(nèi)容大概就是今天上的課。
4、單元測驗是為了檢測近期的學(xué)習(xí)情況。其實分?jǐn)?shù)代表的是你的過去,關(guān)鍵的是對于每次考試的總結(jié)和吸取教訓(xùn),是為了讓你在期中、期末考得更好。老師經(jīng)常會在沒通知的情況下進(jìn)行考試,所以要及時做到“課后復(fù)習(xí)”。
初中數(shù)學(xué)學(xué)習(xí)方法7
俗話說,“習(xí)慣成自然”,良好的學(xué)習(xí)習(xí)慣對學(xué)習(xí)有著重要的促進(jìn)作用。比如:課前預(yù)習(xí)新課的習(xí)慣,可以在教師教授新課之前大致了解課程內(nèi)容,有助于把握重點帶著問題聽課,從而提高課堂學(xué)習(xí)的質(zhì)量;作業(yè)認(rèn)真書寫的習(xí)慣,不僅可以保證作業(yè)的美觀整潔,提高作業(yè)的質(zhì)量,還能夠培養(yǎng)一絲不茍的嚴(yán)謹(jǐn)作風(fēng)。反之,不良的習(xí)慣也會成為學(xué)習(xí)進(jìn)步的絆腳石,不少成績比較差的學(xué)生,腦子都不笨,但往往上課心不在焉、作業(yè)馬馬虎虎、做事丟三拉四。
1、抓住課堂四十五分鐘,學(xué)會聽課
聽課也有不少學(xué)問。學(xué)會聽課,對初中生的學(xué)習(xí)進(jìn)步至關(guān)重要。課堂學(xué)習(xí)是學(xué)習(xí)的最主要環(huán)節(jié),四十五分鐘課堂學(xué)習(xí)效益的高低,某種程度上決定著學(xué)生學(xué)習(xí)成績的好壞。也許有的家長和學(xué)生會想,每個人都有一雙耳朵,聽課誰不會呀。其實不然,聽課也有不少學(xué)問呢。學(xué)會聽課,對初中生的學(xué)習(xí)進(jìn)步至關(guān)重要。 首先,要集中注意聽。心理學(xué)研究表明:注意能夠幫助我們從周圍環(huán)境所提供的大量信息中,選擇對當(dāng)前活動最有意義的信息;同時,使心理活動維持在所選擇的對象上,還能使心理活動根據(jù)當(dāng)前活動的需要作適當(dāng)?shù)姆峙浜驼{(diào)整。所以,注意對于學(xué)習(xí)尤為重要。集中注意、專心致志才能學(xué)有所得;心不在焉、心猿意馬往往一無所獲。
其次,要帶著問題、開動腦子聽。有些同學(xué)聽課不善于開動腦子積極思維,看似目不轉(zhuǎn)睛,但一堂課下來心中卻不留痕跡。俗話說:疑是一切學(xué)習(xí)的開始。帶著問題聽課,就能使聽課有比較明確的'目標(biāo)和重點,增強聽課的針對性,從而提高課堂學(xué)習(xí)效率;帶著問題聽課,還能促使自己積極動腦,緊跟老師的教學(xué)節(jié)奏,及時理解和消化教學(xué)內(nèi)容。
再次,要積極舉手發(fā)言,認(rèn)真做好筆記。教與學(xué)應(yīng)是雙向交流、互相促進(jìn)的。學(xué)生在課堂中,應(yīng)該積極主動地參與教學(xué)。積極舉手發(fā)言就是一種參與,它既能較好的促使自己專心聽課、動腦思維,還能鍛煉語言表達(dá)能力。
“不動筆墨不讀書”、“好記性不如爛筆頭”,都是說邊學(xué)習(xí)邊動筆的好處。筆記不僅是學(xué)習(xí)新知識的方法,也是復(fù)習(xí)舊知識的依據(jù),同時我們還可以從筆記中發(fā)現(xiàn)新的問題。很多家長感到對孩子在學(xué)校里的學(xué)習(xí)無從了解和把握,其實,每天查看一下他們的課本和筆記,就是一種好方法。
2、合理安排時間,有計劃地進(jìn)行學(xué)習(xí)
時間是個常量,需要合理安排;學(xué)習(xí)是艱苦的勞動,也是有規(guī)律可循的。
(1) 幾個需要在老師家長引導(dǎo)下需要處理好的關(guān)系。
玩與學(xué)的關(guān)系,主與次的關(guān)系,發(fā)展興趣和打好基礎(chǔ)的關(guān)系。這里,家長必須幫助指導(dǎo)孩子處理好以下幾個關(guān)系:
首先是處理好玩和學(xué)的關(guān)系。學(xué)習(xí)是初中學(xué)生的主要任務(wù),主要的時間和精力自然應(yīng)該花在學(xué)習(xí)上。但是,學(xué)習(xí)又不是初中學(xué)生生活的全部,初中學(xué)生精力充沛、興趣廣泛,適當(dāng)和有益的活動(包括“玩”)也是他們生活的重要組成部分。有些家長只注重孩子的學(xué)習(xí),把孩子的閑暇時間安排得嚴(yán)嚴(yán)實實,不讓孩子有娛
樂和活動的時間;有些家長卻對孩子的課余活動放任自流,這都不利于學(xué)生的學(xué)習(xí)進(jìn)步和全面發(fā)展。要指導(dǎo)學(xué)生學(xué)會勞逸結(jié)合,學(xué)習(xí)時專心致志、靜得下心來;活動時生龍活虎、放得開來。學(xué)習(xí)和玩不僅是不矛盾的,而且可以相得益彰。 其次是處理好主和次的關(guān)系。初中階段學(xué)習(xí)知識的密度大大增加、學(xué)習(xí)知識的廣度也大大增加,這就需要學(xué)生能夠處理好各種知識內(nèi)容之間的主次關(guān)系。學(xué)科之間有差異,基礎(chǔ)學(xué)科、工具學(xué)科是初中學(xué)習(xí)的重中之重,直接影響其他學(xué)科的學(xué)習(xí),一定要學(xué)得扎實。學(xué)科內(nèi)容本身也有主次,概念、原理及其形成是主,知識的靈活運用是主,自己學(xué)習(xí)的薄弱環(huán)節(jié)是主,在學(xué)習(xí)的過程中應(yīng)該花更多的時間和精力。
再次是處理好發(fā)展興趣和打好基礎(chǔ)的關(guān)系。興趣是學(xué)習(xí)動力產(chǎn)生的直接原因,孩子對哪一門功課感興趣,這門學(xué)科也就往往能夠取得比較好的成績。但是,初中學(xué)生思想和心理還不夠成熟,興趣也往往不夠穩(wěn)定,有些孩子對興趣的理解也比較片面。表現(xiàn)在學(xué)習(xí)方面主要有以下情況:一會兒喜歡這,一會兒喜歡那,見異思遷,結(jié)果什么也沒學(xué)好;光憑興趣學(xué)習(xí),自己認(rèn)為不感興趣的就敬而遠(yuǎn)之,結(jié)果就成了“跛腳”。其實,初中的學(xué)習(xí)是整個人生學(xué)習(xí)的基礎(chǔ),首先要學(xué)好每一門功課,初中學(xué)習(xí)過了關(guān),高中階段就可能比較順利;即便是通常被認(rèn)為是“副課”的歷史、地理、生物等學(xué)科,實際上都是將來社會生活中必不可少的。所以,培養(yǎng)興趣必須以打好基礎(chǔ)為前提。
(2) 遵循記憶規(guī)律安排學(xué)習(xí)
遺忘呈現(xiàn)出“先快后慢”的規(guī)律。這規(guī)律給我們指導(dǎo)孩子的學(xué)習(xí)提供了重要的依據(jù)。
最早用實驗方法研究記憶規(guī)律的心理學(xué)家艾客浩斯發(fā)現(xiàn),學(xué)習(xí)剛結(jié)束,遺忘就相伴開始了。第二天忘得最多最快,第二天需要復(fù)習(xí)的時間較長,如果第二天復(fù)習(xí)了,第三天就遺忘少了,需要復(fù)習(xí)的時間也較短;如果第三天復(fù)習(xí)了,第四天遺忘得就更少了???傊z忘呈現(xiàn)出“先快后慢”的規(guī)律。這規(guī)律給我們指導(dǎo)孩子的學(xué)習(xí)提供了重要的依據(jù)。
及時復(fù)習(xí)。初中生學(xué)習(xí)存在一種普遍的傾向,就是隨學(xué)隨丟,做完教師布置的作業(yè)了事。到考試時,臨時抱佛腳,從頭開始復(fù)習(xí)。要改變這種前學(xué)后忘,到后面問題成堆的現(xiàn)象,關(guān)鍵要做到“及時”,特別是對于那些字母符號、公式、外語單詞等意義性不強的學(xué)習(xí)材料,一定要做到趁熱打鐵,及時復(fù)習(xí)。這好比在堤壩塌方之前,及時加固,要比垮了再修,付出更小的努力。
分散學(xué)習(xí)!凹皶r復(fù)習(xí)”固然重要,但也不能“一勞永逸”。學(xué)習(xí)的規(guī)律告訴我們,分散復(fù)習(xí)比集中復(fù)習(xí)效果更好。以學(xué)習(xí)外語單詞為例,如果當(dāng)天學(xué)習(xí)了20個單詞,一位同學(xué)在當(dāng)天晚上集中復(fù)習(xí)一小時,加以鞏固;另一位同學(xué)當(dāng)晚復(fù)習(xí)半小時,第二天再復(fù)習(xí)15分鐘,第四天復(fù)習(xí)10分鐘,一周后再復(fù)習(xí)5分鐘。結(jié)果后者記憶的效率明顯高于前者。利用分散學(xué)習(xí)的道理,家長可以指導(dǎo)孩子采用“卡片”復(fù)習(xí)的方法。例如復(fù)習(xí)英語單詞,把卡片分為左右兩邊(或正反兩面),分別寫上中文詞義和英語單詞,然后自制七個袋子(或信封),每袋內(nèi)放置一周中某一天應(yīng)復(fù)習(xí)的卡片,復(fù)習(xí)時,用手遮住一面,回憶另一面的內(nèi)容。當(dāng)天復(fù)習(xí)以后,就放入隔天的袋里,以此往復(fù)有規(guī)律地交替復(fù)習(xí),效果十分明顯。其他如數(shù)學(xué)公式等各種知識均可用卡片來進(jìn)行復(fù)習(xí)。
過度學(xué)習(xí)。我國著名科學(xué)家茅以升在83歲高齡時,仍能熟練背誦圓周率小數(shù)點后一百位,別人問他有什么好的記憶方法,他回答說;“說起來很簡單:重復(fù)!重復(fù)!再重復(fù)!”在學(xué)習(xí)中,我們都有這樣的體會,我們記憶某些內(nèi)容,到
剛能勉強背誦時就停止了學(xué)習(xí),結(jié)果過了不久就不會準(zhǔn)確回憶。如果能“一鼓作氣”,再多學(xué)幾遍,效果就大大提高;而且這樣熟練的記憶,保持時間也特別長久,這就是“過度學(xué)習(xí)”。一般而言,過度學(xué)習(xí)保持在50%-100%范圍內(nèi)。舉例子說,背誦一首唐詩,如果用十遍剛好能基本背出,那么最好能再讀3-6遍,這樣就能爛熟于心,倒背如流了。過度學(xué)習(xí)要與及時學(xué)習(xí)和分散學(xué)習(xí)有機(jī)結(jié)合起來。
3、形成適合自己的有效的各科學(xué)習(xí)方法
因“科”制宜,才能有的放矢地學(xué)好各門功課。初中階段的學(xué)習(xí),學(xué)科逐漸細(xì)化,各門學(xué)科都有自己明顯的特點和規(guī)律。理科類數(shù)學(xué)重抽象思維,要善于融會貫通;文科類語文外語等重知識積累,要善于聯(lián)系實際。只有把握各學(xué)科的特點,因“科”制宜,才能有的放矢地學(xué)好各門功課。
初中數(shù)學(xué)學(xué)習(xí)方法8
1、相似三角形:對應(yīng)角相等,對應(yīng)邊成比例的兩個三角形叫做相似三角形;橄嗨菩蔚娜切谓凶鱿嗨迫切
2、相似三角形的判定方法:
根據(jù)相似圖形的特征來判斷。(對應(yīng)邊成比例,對應(yīng)角相等)
1.平行于三角形一邊的直線(或兩邊的延長線)和其他兩邊相交,所構(gòu)成的三角形與原三角形相似;
2.如果一個三角形的兩個角與另一個三角形的`兩個角對應(yīng)相等,那么這兩個三角形相似;
3.如果兩個三角形的兩組對應(yīng)邊的比相等,并且相應(yīng)的夾角相等,那么這兩個三角形相似;
4.如果兩個三角形的三組對應(yīng)邊的比相等,那么這兩個三角形相似;
3、直角三角形相似判定定理:
1.斜邊與一條直角邊對應(yīng)成比例的兩直角三角形相似。
2.直角三角形被斜邊上的高分成的兩個直角三角形與原直角三角形相似,并且分成的兩個直角三角形也相似。
4、相似三角形的性質(zhì):
1.相似三角形的一切對應(yīng)線段(對應(yīng)高、對應(yīng)中線、對應(yīng)角平分線、外接圓半徑、內(nèi)切圓半徑等)的比等于相似比。
2.相似三角形周長的比等于相似比。
3.相似三角形面積的比等于相似比的平方。
初中數(shù)學(xué)學(xué)習(xí)方法9
怎樣學(xué)好初中數(shù)學(xué)
一、多看
主要是指認(rèn)真閱讀數(shù)學(xué)課本。許多同學(xué)沒有養(yǎng)成這個習(xí)慣,把課本當(dāng)成練習(xí)冊;也有一部分同學(xué)不知怎么閱讀,這是他們學(xué)不好數(shù)學(xué)的主要原因之一。一般地,閱讀可以分以下三個層次:
1.課前預(yù)習(xí)閱讀。預(yù)習(xí)課文時,要準(zhǔn)備一張紙、一支筆,將課本中的關(guān)鍵詞語、產(chǎn)生的疑問和需要思考的問題隨手記下,對定義、公理、公式、法則等,可以在紙上進(jìn)行簡單的復(fù)述,推理。重點知識可在課本上批、劃、圈、點。這樣做,不但有助于理解課文,還能幫助我們在課堂上集中精力聽講,有重點地聽講。
2.課堂閱讀。預(yù)習(xí)時,我們只對所要學(xué)的教材內(nèi)容有了一個大概的了解,不一定都已深透理解和消化吸收,因此有必要對預(yù)習(xí)時所做的標(biāo)記和批注,結(jié)合老師的講授,進(jìn)一步閱讀課文,從而掌握重點、關(guān)鍵,解決預(yù)習(xí)中的疑難問題。
3.課后復(fù)習(xí)閱讀。課后復(fù)習(xí)是課堂學(xué)習(xí)的延伸,既可解決在預(yù)習(xí)和課堂中仍然沒有解決的問題,又能使知識系統(tǒng)化,加深和鞏固對課堂學(xué)習(xí)內(nèi)容的.理解和記憶。一節(jié)課后,必須先閱讀課本,然后再做作業(yè);一個單元后,應(yīng)全面閱讀課本,對本單元的內(nèi)容前后聯(lián)系起來,進(jìn)行綜合概括,寫出知識小結(jié),進(jìn)行查缺補漏。
二、多想
主要是指養(yǎng)成思考的習(xí)慣,學(xué)會思考的方法。獨立思考是學(xué)習(xí)數(shù)學(xué)必須具備的能力。
同學(xué)們在學(xué)習(xí)時,要邊聽(課)邊想,邊看(書)邊想,邊做(題)邊想,通過自己積極思考,深刻理解數(shù)學(xué)知識,歸納總結(jié)數(shù)學(xué)規(guī)律,靈活解決數(shù)學(xué)問題,這樣才能把老師講的、課本上寫的變成自己的知識。
三、多做
主要是指做習(xí)題,學(xué)數(shù)學(xué)一定要做習(xí)題,并且應(yīng)該適當(dāng)?shù)囟嘧鲂W隽?xí)題的目的首先是熟練和鞏固學(xué)習(xí)的知識;其次是初步啟發(fā)靈活應(yīng)用知識和培養(yǎng)獨立思考的能力;第三是融會貫通,把不同內(nèi)容的數(shù)學(xué)知識溝通起來。在做習(xí)題時,要認(rèn)真審題,認(rèn)真思考,應(yīng)該用什么方法做?能否有簡便解法?做到邊做邊思考邊總結(jié),通過練習(xí)加深對知識的理解。
四、多問
是指在學(xué)習(xí)過程中要善于發(fā)現(xiàn)和提出疑問,這是衡量一個學(xué)生學(xué)習(xí)是否有進(jìn)步的重要標(biāo)志之一。有經(jīng)驗的老師認(rèn)為:能夠發(fā)現(xiàn)和提出疑問的學(xué)生才更有希望獲得學(xué)習(xí)的成功;反之,那種一問三不知,自己又提不出任何問題的學(xué)生,是無法學(xué)好數(shù)學(xué)的。那么,怎樣才能發(fā)現(xiàn)和提出問題呢?第一,要深入觀察,逐步培養(yǎng)自己敏銳的觀察能力;第二,要肯動腦筋,不愿意動腦筋,不去思考,當(dāng)然發(fā)現(xiàn)不了什么問題,也提不出疑問。發(fā)現(xiàn)問題后,經(jīng)過自己的獨立思考,問題仍得不到解決時,應(yīng)當(dāng)虛心向別人請教,向老師、同學(xué)、家長,向一切在這個問題上比自己強的人請教。不要有虛榮心,不要怕別人看不起。只有善于提出問題、虛心學(xué)習(xí)的人,才有可能成為真正的學(xué)習(xí)上的強者。
初中數(shù)學(xué)學(xué)習(xí)方法有哪些
1.學(xué)好數(shù)學(xué)要抓住三個“基本”:基本的概念要清楚,基本的規(guī)律要熟悉,基本的方法要熟練。
2.做完題目后一定要認(rèn)真總結(jié),做到舉一反三,這樣,以后遇到同一類的問題是就不會花費太多的時間和精力了。
3.一定要全面了解數(shù)學(xué)概念,不能以偏概全。
4.學(xué)習(xí)概念的最終目的是能運用概念來解決具體問題,因此,要主動運用所學(xué)的數(shù)學(xué)概念來分析,解決有關(guān)的數(shù)學(xué)問題。
5.要掌握各種題型的解題方法,在練習(xí)中有意識的地去總結(jié),慢慢地培養(yǎng)適合自己的分析習(xí)慣。
6.要主動提高綜合分析問題的能力,借助文字閱讀去分析理解。
7.在學(xué)習(xí)中,要有意識地注意知識的遷移,培養(yǎng)解決問題的能力。
8.要將所學(xué)知識貫穿在一起形成系統(tǒng),我們可以運用類比聯(lián)系法。
9.將各章節(jié)中的內(nèi)容互相聯(lián)系,不同章節(jié)之間互相類比,真正將前后知識融會貫通,連為一體,這樣能幫助我們系統(tǒng)深刻地理解知識體系和內(nèi)容。
10.在數(shù)學(xué)學(xué)習(xí)中可以利用口訣將相近的概念或規(guī)律進(jìn)行比較,搞清楚它們的相同點,區(qū)別和聯(lián)系,從而加深理解和記憶。弄清數(shù)學(xué)知識間的相互聯(lián)系,透徹理解概念,知道其推導(dǎo)過程,使知識條理化,系統(tǒng)化。
初中生學(xué)習(xí)方法指導(dǎo)
掌握正確的學(xué)習(xí)方法,養(yǎng)成良好的學(xué)習(xí)習(xí)慣是學(xué)習(xí)成功的必經(jīng)之路,與小學(xué)生相比,初中生的學(xué)習(xí)方法顯得更加多樣和復(fù)雜,學(xué)習(xí)內(nèi)容的變化要求初中生做到:初中生學(xué)習(xí)方法指導(dǎo)
1、學(xué)會合理安排自己的學(xué)習(xí)時間,以免造成學(xué)習(xí)上的忙亂。
2、課堂上,要求學(xué)生認(rèn)真聽講,學(xué)會記聽課筆記。
3、隨著學(xué)習(xí)內(nèi)容的擴(kuò)大加深,要求學(xué)生能夠?qū)W會獨立思考,對學(xué)習(xí)材料進(jìn)行邏輯加工,做到學(xué)得活、記得牢、用得上。
初中數(shù)學(xué)學(xué)習(xí)方法10
初中數(shù)學(xué)學(xué)習(xí)經(jīng)驗方法
1、學(xué)好初中數(shù)學(xué)課前要預(yù)習(xí)
初中生想要學(xué)好數(shù)學(xué),那么就要利用課前的時間將課上老師要講的內(nèi)容預(yù)習(xí)一下。初中數(shù)學(xué)課前的預(yù)習(xí)是要明白老師在課上大致所講的內(nèi)容,這樣有利于和方便初中生整理知識結(jié)構(gòu)。
初中生課前預(yù)習(xí)數(shù)學(xué)還能夠知道自己有哪些不明白的知識點,這樣在課上就會集中注意力去聽,不會出現(xiàn)溜號和走神的情況。同時課前預(yù)習(xí)還可以將知識點形成體系,可以幫助初中生建立完整的知識結(jié)構(gòu)。
2、學(xué)習(xí)初中數(shù)學(xué)課上是關(guān)鍵
初中生想要學(xué)好學(xué)生,在課上就是一個字:跟。上初中數(shù)學(xué)課時跟住老師,老師講到哪里一定要跟上,仔細(xì)看老師的板書,隨時知道老師講的是哪里,涉及到的知識點是什么。有的初中生喜歡記筆記,在這里提醒大家,初中數(shù)學(xué)課上的時候盡量不要記筆記。
你的主要目的是跟著老師,而不是一味的記筆記,即使有不會的地方也要快速簡短的記下來,可以在課后完善。跟上老師的思維是最重要的,這就意味著你明白了老師的分析和解題過程。
3、課后可以適當(dāng)做一些初中數(shù)學(xué)基礎(chǔ)題
在每學(xué)完一課后,初中生可以在課后做一些初中數(shù)學(xué)的基礎(chǔ)題型,在做這樣的題時,建議大家是,不要出現(xiàn)錯誤的情況,做完題后要學(xué)會思考和整理。當(dāng)你的.初中數(shù)學(xué)基礎(chǔ)題沒問題的時候,就可以做一些有點難度的提升題了,如果做不出來可以根據(jù)解析看題。
但是記住千萬不要大量的做這類題,初中生偶爾做一次有難度的題還是對數(shù)學(xué)的學(xué)習(xí)有幫助的,但是如果將重點放在這上面,沒有什么好處。同時要學(xué)會整理,將自己錯題歸納并總結(jié),
數(shù)學(xué)是由簡單明了的事項一步一步地發(fā)展而來,所以,只要學(xué)習(xí)數(shù)學(xué)的人老老實實地、一步一步地去理解,并同時記住其要點,以備以后之需用,就一定能理解其全部內(nèi)容.就是說,若理解了第一步,就必然能理解第二步,理解了第一步、第二步,就必然能理解第三步.這好比梯子的階級,在登梯子時,一級一級地往上登,無論多小的人,只要他的腿長足以跨過一級階梯,就一定能從第一級登上第二級,從第二級登上第三級、第四級,這時,只不過是反復(fù)地做同一件事,故不管誰都應(yīng)該會做.
學(xué)好初中數(shù)學(xué)的方法
1、做好預(yù)習(xí):
單元預(yù)習(xí)時粗讀,了解近階段的學(xué)習(xí)內(nèi)容,課時預(yù)習(xí)時細(xì)讀,注重知識的形成過程,對難以理解的概念、公式和法則等要做好記錄,以便帶著問題聽課。
2、認(rèn)真聽課:
聽課應(yīng)包括聽、思、記三個方面。聽,聽知識形成的來龍去脈,聽重點和難點,聽例題的解法和要求。思,一是要善于聯(lián)想、類比和歸納,二是要敢于質(zhì)疑,提出問題。記,指課堂筆記——記方法,記疑點,記要求,記注意點。
3、認(rèn)真解題:
課堂練習(xí)是最及時最直接的反饋,一定不能錯過。不要急于完成作業(yè),要先看看你的筆記本,回顧學(xué)習(xí)內(nèi)容,加深理解,強化記憶。
4、及時糾錯:
課堂練習(xí)、作業(yè)、檢測,反饋后要及時查閱,分析錯題的原因,必要時強化相關(guān)計算的訓(xùn)練。不明白的問題要及時向同學(xué)和老師請教了,不能將問題處于懸而未解的狀態(tài),養(yǎng)成今日事今日畢的好習(xí)慣。
5、學(xué)會總結(jié):
馮老師說:“數(shù)學(xué)一環(huán)扣一環(huán),知識間的聯(lián)系非常緊密,階段性總結(jié),不僅能夠起到復(fù)習(xí)鞏固的作用,還能找到知識間的聯(lián)系,做到了然于心,融會貫通。
6、學(xué)會管理:
管理好自己的筆記本,作業(yè)本,糾錯本,還有做過的所有練習(xí)卷和測試卷。馮老師稱,這可是大考復(fù)習(xí)時最有用的資料,千萬不可疏忽。
目前初中學(xué)生學(xué)習(xí)數(shù)學(xué)存在一個嚴(yán)重的問題就是不善于讀數(shù)學(xué)教材,他們往往是死記硬背。重視閱讀方法對提高初中學(xué)生的學(xué)習(xí)能力是至關(guān)重要的。新學(xué)一個章節(jié)內(nèi)容,先粗粗讀一遍,即瀏覽本章節(jié)所學(xué)內(nèi)容的枝干,然后一邊讀一邊勾,粗略懂得教材的內(nèi)容及其重點、難點所在,對不理解的地方打上記號。然后細(xì)細(xì)地讀,即根據(jù)每章節(jié)后的學(xué)習(xí)要求,仔細(xì)閱讀教材內(nèi)容,理解數(shù)學(xué)概念、公式、法則、思想方法的實質(zhì)及其因果關(guān)系,把握重點、突破難點。再次帶著研究者的態(tài)度去讀,即帶著發(fā)展的觀點研討知識的來龍去脈、結(jié)構(gòu)關(guān)系、編排意圖,并歸納要點,把書讀懂,并形成知識網(wǎng)絡(luò),完善認(rèn)識結(jié)構(gòu),當(dāng)學(xué)生掌握了這三種讀法,形成習(xí)慣之后,就能從本質(zhì)上改變其學(xué)習(xí)方式,提高學(xué)習(xí)效率了。
提高聽課質(zhì)量要培養(yǎng)會聽課,聽懂課的習(xí)慣。注意聽教師每節(jié)課強調(diào)的學(xué)習(xí)重點,注意聽對定理、公式、法則的引入與推導(dǎo)的方法和過程,注意聽對例題關(guān)鍵部分的提示和處理方法,注意聽對疑難問題的解釋及一節(jié)課最后的小結(jié),這樣,抓住重、難點,沿著知識的發(fā)生發(fā)展的過程來聽課,不僅能提高聽課效率,而且能由“聽會”轉(zhuǎn)變?yōu)椤皶牎薄?/p>
有疑必問是提高學(xué)習(xí)效率的有效辦法學(xué)習(xí)過程中,遇到疑問,抓緊時間問老師和同學(xué),把沒有弄懂,沒有學(xué)明白的知識,最短的時間內(nèi)掌握。建立自己的錯題本,經(jīng)常翻閱,提醒自己同樣的錯誤不要犯第二次。從而提高學(xué)習(xí)效率。
初中數(shù)學(xué)的學(xué)習(xí)方法
概念課
要重視教學(xué)過程,要積極體驗知識產(chǎn)生、發(fā)展的過程,要把知識的來龍去脈搞清楚,認(rèn)識知識發(fā)生的過程,理解公式、定理、法則的推導(dǎo)過程,改變死記硬背的方法,這樣我們就能從知識形成、發(fā)展過程當(dāng)中,理解到學(xué)會它的樂趣;在解決問題的過程中,體會到成功的喜悅。
習(xí)題課
要掌握“聽一遍不如看一遍,看一遍不如做一遍,做一遍不如講一遍,講一遍不如辯一辯”的訣竅。除了聽老師講,看老師做以外,要自己多做習(xí)題,而且要把自己的體會主動、大膽地講給大家聽,遇到問題要和同學(xué)、老師辯一辯,堅持真理,改正錯誤。在聽課時要注意老師展示的解題思維過程,要多思考、多探究、多嘗試,發(fā)現(xiàn)創(chuàng)造性的證法及解法,學(xué)會“小題大做”和“大題小做”的解題方法,即對選擇題、填空題一類的客觀題要認(rèn)真對待絕不粗心大意,就像對待大題目一樣,做到下筆如有神;對綜合題這樣的大題目不妨把“大”拆“小”,以“退”為“進(jìn)”,也就是把一個比較復(fù)雜的問題,拆成或退為最簡單、最原始的問題,把這些小題、簡單問題想通、想透,找出規(guī)律,然后再來一個飛躍,進(jìn)一步升華,就能湊成一個大題,即退中求進(jìn)了。如果有了這種分解、綜合的能力,加上有扎實的基本功還有什么題目難得倒我們。
復(fù)習(xí)課
在數(shù)學(xué)學(xué)習(xí)過程中,要有一個清醒的復(fù)習(xí)意識,逐漸養(yǎng)成良好的復(fù)習(xí)習(xí)慣,從而逐步學(xué)會學(xué)習(xí)。數(shù)學(xué)復(fù)習(xí)應(yīng)是一個反思性學(xué)習(xí)過程。要反思對所學(xué)習(xí)的知識、技能有沒有達(dá)到課程所要求的程度;要反思學(xué)習(xí)中涉及到了哪些數(shù)學(xué)思想方法,這些數(shù)學(xué)思想方法是如何運用的,運用過程中有什么特點;要反思基本問題(包括基本圖形、圖像等),典型問題有沒有真正弄懂弄通了,平時碰到的問題中有哪些問題可歸結(jié)為這些基本問題;要反思自己的錯誤,找出產(chǎn)生錯誤的原因,訂出改正的措施。在新學(xué)期大家準(zhǔn)備一本數(shù)學(xué)學(xué)習(xí)“病例卡”,把平時犯的錯誤記下來,找出“病因”開出“處方”,并且經(jīng)常拿出來看看、想想錯在哪里,為什么會錯,怎么改正,通過你的努力,到中考時你的數(shù)學(xué)就沒有什么“病例”了。并且數(shù)學(xué)復(fù)習(xí)應(yīng)在數(shù)學(xué)知識的運用過程中進(jìn)行,通過運用,達(dá)到深化理解、發(fā)展能力的目的,因此在新的一年要在教師的指導(dǎo)下做一定數(shù)量的數(shù)學(xué)習(xí)題,做到舉一反三、熟練應(yīng)用,避免以“練”代“復(fù)”的題海戰(zhàn)術(shù)。
初中數(shù)學(xué)學(xué)習(xí)方法11
1、上好課。
學(xué)生獲取知識的主要途徑是課堂,要想上好每一節(jié)課,必須做到課前先預(yù)習(xí)。預(yù)習(xí)的目的是為了能更好得聽老師講課,通過預(yù)習(xí),掌握度要達(dá)到百分之八十。帶著預(yù)習(xí)中不明白的問題去聽老師講課,來解答這類的問題。預(yù)習(xí)還可以使聽課的整體效率提高。具體的預(yù)習(xí)方法:將書上的內(nèi)容預(yù)習(xí)完,畫出知識點,及自己不理解的部分內(nèi)容,整個過程大約持續(xù)10-20分鐘。在時間允許的情況下,還可以將練習(xí)題做完。
2、做好題。
讓數(shù)學(xué)課學(xué)與練相結(jié)合。在數(shù)學(xué)課上,光聽是沒用的。當(dāng)老師讓同學(xué)去黑板上演算時,自己也要在草稿紙上練。因為時間的限制,一般做好與知識點有關(guān)的兩道練習(xí)題即可,如果遇到不懂的難題,一定要提出來,正式作業(yè)也沒有必要完成大量的習(xí)題,只需要完成與課本知識點有關(guān)的兩道題訓(xùn)練即可。
3、勤思考。
數(shù)學(xué)學(xué)習(xí)的.發(fā)展歸根結(jié)底是思維的發(fā)展,通過“思考”可以讓學(xué)生養(yǎng)成“動腦”的習(xí)慣,當(dāng)然不一定是思考三分鐘,也可能看到題目后馬上得出做題方法,也可能是半個小時也想不出解題的方法和思路,這就需要經(jīng)常思考,養(yǎng)成良好的做題習(xí)慣,勤于動腦,提高自己的思維能力。
4、勤復(fù)習(xí)。
寫完作業(yè)后對當(dāng)天老師講的內(nèi)容進(jìn)行梳理復(fù)習(xí),也可以在單元結(jié)束后進(jìn)行復(fù)習(xí)和檢測。隨時了解近期的學(xué)習(xí)情況。其實分?jǐn)?shù)代表的是你的過去,關(guān)鍵是通過每次考試總結(jié)經(jīng)驗、吸取教訓(xùn),也是為了讓你在期中、期末考得更好。老師通常會在沒通知的情況下進(jìn)行考試,所以要及時做到“課后勤復(fù)習(xí)”。
5、會作業(yè)。
從思想上要認(rèn)真對待,如果養(yǎng)成懶散的'習(xí)慣了,以后問題就會更多,今日不努力,明日就會失去更多,再要改善起來,就更難了。
因為一個好習(xí)慣的養(yǎng)成是要下決心去堅持的,雖然由于以前的習(xí)慣不好或者遺留問題太多導(dǎo)致在堅持的過程中會容易產(chǎn)生抵觸的情緒,甚至有時還容易放棄,但是要知道,一旦好習(xí)慣養(yǎng)成之后,原來所經(jīng)常遇到的問題就會越來越少,成績也自然提高了起來。
初中數(shù)學(xué)學(xué)習(xí)方法12
進(jìn)入初中后,科目增加、內(nèi)容拓寬、知識深化,尤其是數(shù)學(xué)從具體發(fā)展到抽象,從文字發(fā)展到符號,由靜態(tài)發(fā)展到動態(tài)學(xué)生認(rèn)知結(jié)構(gòu)發(fā)生根本變化。加之一部分學(xué)生還未脫離教師的“哺乳”時期,沒有自覺攝取的能力,致使有些學(xué)生因不會學(xué)習(xí)或?qū)W不得法而成績逐漸下降,久而久之失去學(xué)習(xí)信心和興趣,開始陷入?yún)拰W(xué)的困境。因此重視對初中學(xué)生數(shù)學(xué)學(xué)習(xí)方法的指導(dǎo)是非常必要的。這里僅對初中數(shù)學(xué)學(xué)習(xí)方法指導(dǎo)的要點及內(nèi)容談幾點拙見。
方法/步驟
一、數(shù)學(xué)概念學(xué)習(xí)方法。
數(shù)學(xué)中有許多概念,如何正確地掌握概念,應(yīng)該知道學(xué)習(xí)概念需要怎樣的一個過程,應(yīng)達(dá)到什么程度。一個數(shù)學(xué)概念需要記住名稱,敘述出本質(zhì)屬性,體會出所涉及的范圍,并應(yīng)用概念準(zhǔn)確進(jìn)行判斷。這些問題老師沒有要求,不給出學(xué)習(xí)方法,學(xué)生將很難有規(guī)律地進(jìn)行學(xué)習(xí)。數(shù)學(xué)概念的學(xué)習(xí)方法是:
1、閱讀概念,記住名稱或符號。
2、背誦定義,掌握特性。
3、舉出正反實例,體會概念反映的范圍。
4、進(jìn)行練習(xí),準(zhǔn)確地判斷。
二、學(xué)公式的學(xué)習(xí)方法
公式具有抽象性,公式中的字母代表一定范圍內(nèi)的無窮多個數(shù)。有的學(xué)生在學(xué)習(xí)公式時,可以在短時間內(nèi)掌握,而有的學(xué)生卻要反來復(fù)去地體會,才能跳出千變?nèi)f化的.數(shù)字關(guān)系的泥堆里。教師應(yīng)明確告訴學(xué)生學(xué)習(xí)公式過程需要的步驟,使學(xué)生能夠迅速順利地掌握公式。數(shù)學(xué)公式的學(xué)習(xí)方法是:
1、書寫公式,記住公式中字母間的關(guān)系。
2、懂得公式的來龍去脈,掌握推導(dǎo)過程。
3、用數(shù)字驗算公式,在公式具體化過程中體會公式中反映的規(guī)律。
4、將公式進(jìn)行各種變換,了解其不同的變化形式。
5、將公式中的字母想象成抽象的框架,達(dá)到自如地應(yīng)用公式。
三、數(shù)學(xué)定理的學(xué)習(xí)方法。
一個定理包含條件和結(jié)論兩部分,定理必須進(jìn)行證明,證明過程是連接條件和結(jié)論的橋梁,而學(xué)習(xí)定理是為了更好地應(yīng)用它解決各種問題。數(shù)學(xué)定理的學(xué)習(xí)方法是:
1、背誦定理。
2、分清定理的條件和結(jié)論。
3、理解定理的證明過程。
4、應(yīng)用定理證明有關(guān)問題。
5、體會定理與有關(guān)定理和概念的內(nèi)在關(guān)系。
有的定理包含公式,如韋達(dá)定理、勾股定理、正弦定理,它們的學(xué)習(xí)還應(yīng)該同數(shù)公式的學(xué)習(xí)方法結(jié)合起來進(jìn)行。
四、初學(xué)幾何證明的學(xué)習(xí)方法。
在七年級第二學(xué)期,八年級立體幾何學(xué)習(xí)的開始,學(xué)生總感到難以入門,以下的方法是許多老教師十分認(rèn)同的,無論是上課還是自學(xué),均可以開展。
1、看題畫圖。(看,寫)
2、審題找思路(聽老師講解)
3、閱讀書中證明過程。
4、回憶并書寫證明過程。
五、提高幾何證明能力的化歸法。
在掌握了幾何證明的基本知識和方法以后,在能夠較順利和準(zhǔn)確地表述證明過程的基礎(chǔ)上,如何提高幾何證明能力?這就需要積累各種幾何題型的證明思路,需要懂得若干證明技巧。這樣我們可以通過老師集中講解,或者通過集中閱讀若干幾何證明題,而達(dá)到上述目的;瘹w法是將未知化歸為已知的方法,當(dāng)我們遇到一個新的幾何證明題時,我們需要注意其題型,找到關(guān)鍵步驟,將它化歸為已知題型時就可結(jié)束。此時最重要的是記住化歸步驟及證題思路即可,不再重視祥細(xì)的表述過程。幾何證明能力的化歸法:
1、審題,弄清已知條件和求證結(jié)論。
2、畫圖,作輔助線,尋找證題途徑。
3、記錄證題途徑的各個關(guān)鍵步驟。
4、總結(jié)證明思路,使證題過程在大腦中形成清晰的印象。注意事項
與數(shù)學(xué)課堂教學(xué)相適應(yīng)的學(xué)習(xí)方法,就是預(yù)習(xí)、聽課、復(fù)習(xí)、作業(yè)等基本方法。治學(xué)方法“由薄到厚”和“由厚到薄”其實也很實用。同時在學(xué)習(xí)中,應(yīng)注意接受學(xué)習(xí)與發(fā)現(xiàn)學(xué)習(xí)相結(jié)合。
初中數(shù)學(xué)學(xué)習(xí)方法13
學(xué)好初一數(shù)學(xué)的方法技巧
1、做好預(yù)習(xí):
單元預(yù)習(xí)時粗讀,了解近階段的學(xué)習(xí)內(nèi)容,課時預(yù)習(xí)時細(xì)讀,注重知識的形成過程,對難以理解的概念、公式和法則等要做好記錄,以便帶著問題聽課。
2、認(rèn)真聽課:
聽課應(yīng)包括聽、思、記三個方面。
聽,聽知識形成的來龍去脈,聽重點和難點,聽例題的解法和要求。
思,一是要善于聯(lián)想、類比和歸納,二是要敢于質(zhì)疑,提出問題。
記,指課堂筆記——記方法,記疑點,記要求,記注意點。
3、認(rèn)真解題:
課堂練習(xí)是最及時最直接的反饋,一定不能錯過。不要急于完成作業(yè),要先看看你的筆記本,回顧學(xué)習(xí)內(nèi)容,加深理解,強化記憶。
4、及時糾錯:
課堂練習(xí)、作業(yè)、檢測,反饋后要及時查閱,分析錯題的原因,必要時強化相關(guān)計算的訓(xùn)練。不明白的問題要及時向同學(xué)和老師請教了,不能將問題處于懸而未解的狀態(tài),養(yǎng)成今日事今日畢的好習(xí)慣。
5、學(xué)會總結(jié):
馮老師說:“數(shù)學(xué)一環(huán)扣一環(huán),知識間的聯(lián)系非常緊密,階段性總結(jié),不僅能夠起到復(fù)習(xí)鞏固的作用,還能找到知識間的聯(lián)系,做到了然于心,融會貫通。
6、學(xué)會管理:
管理好自己的筆記本,作業(yè)本,糾錯本,還有做過的所有練習(xí)卷和測試卷。馮老師稱,這可是大考復(fù)習(xí)時最有用的資料,千萬不可疏忽。
初二數(shù)學(xué)學(xué)習(xí)方法技巧
1、配方法:
所謂配方,就是把一個解析式利用恒等變形的方法,把其中的某些項配成一個或幾個多項式正整數(shù)次冪的和形式。通過配方解決數(shù)學(xué)問題的.方法叫配方法。其中,用的最多的是配成完全平方式。配方法是數(shù)學(xué)中一種重要的恒等變形的方法,它的應(yīng)用十分非常廣泛,在因式分解、化簡根式、解方程、證明等式和不等式、求函數(shù)的極值和解析式等方面都經(jīng)常用到它。
2、因式分解法:
因式分解,就是把一個多項式化成幾個整式乘積的形式。因式分解是恒等變形的基礎(chǔ),它作為數(shù)學(xué)的一個有力工具、一種數(shù)學(xué)方法在代數(shù)、幾何、三角等的解題中起著重要的作用。因式分解的方法有許多,除中學(xué)課本上介紹的提取公因式法、公式法、分組分解法、十字相乘法等外,還有如利用拆項添項、求根分解、換元、待定系數(shù)等等。
3、換元法:
換元法是數(shù)學(xué)中一個非常重要而且應(yīng)用十分廣泛的解題方法。我們通常把未知數(shù)或變數(shù)稱為元,所謂換元法,就是在一個比較復(fù)雜4、判別式法與韋達(dá)定理
一元二次方程ax2+bx+c=0(a、b、c屬于R,a≠0)根的判別,△=b2-4ac,不僅用來判定根的性質(zhì),而且作為一種解題方法,在代數(shù)式變形,解方程(組),解不等式,研究函數(shù)乃至幾何、三角運算中都有非常廣泛的應(yīng)用。
韋達(dá)定理除了已知一元二次方程的一個根,求另一根;已知兩個數(shù)的和與積,求這兩個數(shù)等簡單應(yīng)用外,還可以求根的對稱函數(shù),計論二次方程根的符號,解對稱方程組,以及解一些有關(guān)二次曲線的問題等,都有非常廣泛的應(yīng)用。
4、待定系數(shù)法:
在解數(shù)學(xué)問題時,若先判斷所求的結(jié)果具有某種確定的形式,其中含有某些待定的系數(shù),而后根據(jù)題設(shè)條件列出關(guān)于待定系數(shù)的等式,最后解出這些待定系數(shù)的值或找到這些待定系數(shù)間的某種關(guān)系,從而解答數(shù)學(xué)問題,這種解題方法稱為待定系數(shù)法。它是中學(xué)數(shù)學(xué)中常用的方法之一。
初三數(shù)學(xué)復(fù)習(xí)方法及技巧
一、深刻理解概念。
概念是初三數(shù)學(xué)的基石,學(xué)習(xí)概念(包括定義、定理、性質(zhì)與判定)不僅要知其然,還要知其所以然,許多同學(xué)只注重記概念,而忽視了對其背景的理解,這樣是學(xué)不好數(shù)學(xué)的,對于每個定義、定理,我們必須在牢記其內(nèi)容的基礎(chǔ)上知道它是怎樣得來的,又是運用到何處的,只有這樣,才能更好地運用它來解決問題。多看一些例題。
細(xì)心的朋友會發(fā)現(xiàn),老師在講解基礎(chǔ)內(nèi)容之后,總是給我們補充一些課外例、習(xí)題,這是大有裨益的,我們學(xué)的概念、定理,一般較抽象,要把它們具體化,就需要把它們運用在題目中,由于我們剛接觸到這些知識,運用起來還不夠熟練,這時,例題就幫了我們大忙,我們可以在看例題的過程中,將頭腦中已有的概念具體化,使對知識的理解更深刻,更透徹,由于老師補充的例題十分有限,所以我們還應(yīng)自己找一些來看,看例題,還要注意以下幾點:
不能只看皮毛,不看內(nèi)涵。
我們看例題,就是要真正掌握其方法,建立起更寬的解題思路,如果看一道就是一道,只記題目不記方法,看例題也就失去了它本來的意義,每看一道題目,就應(yīng)理清它的思路,掌握它的思維方法,再遇到類似的題目或同類型的題目,心中有了大概的印象,做起來也就容易了,不過要強調(diào)一點,除非有十分的把握,否則不要憑借主觀臆斷,那樣會犯經(jīng)驗主義錯誤,走進(jìn)死胡同的。要把想和看結(jié)合起來。
我們看例題,在讀了題目以后,可以自己先大概想一下如何做,再對照解答,看自己的思路有哪點比解答更好,促使自己有所提高,或者自己的思路和解答不同,也要找出原因,總結(jié)經(jīng)驗。
初中數(shù)學(xué)學(xué)習(xí)方法14
1、會聽
聽課要會聽,不是你集中經(jīng)歷去聽就行,而是要結(jié)合自己預(yù)習(xí)時自己所突破不了的知識去聽,做到有的放矢,如果采用小組探究形式學(xué)習(xí),一定要有自己的`見解,不能人云亦云,小伙伴之間要取長補短,把重點和難點知識把握好,做到當(dāng)堂課的內(nèi)容一定要當(dāng)堂消化理解,不要欠債。
2、會記
數(shù)學(xué)課往往涉及到很多,這些都是學(xué)生在解答數(shù)學(xué)問題的依據(jù),要求學(xué)生對概念、定理、公理、公式等進(jìn)行熟記,并逐漸養(yǎng)成歸納、整理的好習(xí)慣,讓學(xué)生形成一定的知識體系,形成對知識的整體認(rèn)知。
上課做筆記不是簡單的記錄老師的板書,而是要把老師所講的知識點、解題技巧和容易犯的錯誤進(jìn)行分類整理,還要做到經(jīng);仡,加深理解和記憶。
3、會練
數(shù)學(xué)不同于其他學(xué)科,只把概念、定理、公理、公式等進(jìn)行熟記還不夠,有時無法解決一些實際問題,只有通過不斷的練習(xí)才能做到熟能生巧,減少運算中出現(xiàn)的錯誤。
此環(huán)節(jié)要求學(xué)生做題要快,準(zhǔn)確率要高,書寫干凈利落。
讓學(xué)生養(yǎng)成學(xué)習(xí)中認(rèn)真、嚴(yán)謹(jǐn)?shù)目茖W(xué)態(tài)度。
初中數(shù)學(xué)學(xué)習(xí)方法15
選擇題的題型構(gòu)思精巧,形式靈活,可以比較全面地考察學(xué)生的基礎(chǔ)知識和基本技能,從而增大了試卷的容量和知識覆蓋面。
填空題是標(biāo)準(zhǔn)化考試的重要題型之一,它同選擇題一樣具有考查目標(biāo)明確,知識復(fù)蓋面廣,評卷準(zhǔn)確迅速,有利于考查學(xué)生的分析判斷能力和計算能力等優(yōu)點,不同的是填空題未給出答案,可以防止學(xué)生猜估答案的情況。
要想迅速、正確地解選擇題、填空題,除了具有準(zhǔn)確的計算、嚴(yán)密的推理外,還要有解選擇題、填空題的`方法與技巧。
大家對于初中數(shù)學(xué)學(xué)習(xí)方法匯編之客觀性題的內(nèi)容都熟悉掌握了吧。接下來還有更多更全的初中數(shù)學(xué)學(xué)習(xí)方法等著大家來掌握哦。
【初中數(shù)學(xué)學(xué)習(xí)方】相關(guān)文章:
初中數(shù)學(xué)的學(xué)習(xí)總結(jié)11-18
初中數(shù)學(xué)的學(xué)習(xí)計劃03-19
初中數(shù)學(xué)的學(xué)習(xí)規(guī)劃03-31
初中數(shù)學(xué)學(xué)習(xí)總結(jié)11-28
初中數(shù)學(xué)的學(xué)習(xí)方法11-18
初中數(shù)學(xué)聽課學(xué)習(xí)總結(jié)06-29
學(xué)習(xí)初中數(shù)學(xué)的實用方法08-11
初中數(shù)學(xué)新課標(biāo)學(xué)習(xí)總結(jié)03-19