高二數(shù)學(xué)學(xué)習(xí)方法通用15篇
無論在學(xué)習(xí)、工作或是生活中,大家都在不斷地學(xué)習(xí),掌握一定的學(xué)習(xí)方法,學(xué)習(xí)效率就會提高很多。想要高效學(xué)習(xí),卻不知道怎么做?下面是小編收集整理的高二數(shù)學(xué)學(xué)習(xí)方法,僅供參考,希望能夠幫助到大家。
高二數(shù)學(xué)學(xué)習(xí)方法1
(1)記數(shù)學(xué)筆記,特別是對概念理解的不同側(cè)面和數(shù)學(xué)規(guī)律,教師在課堂中拓展的課外知識。記錄下來本章你覺得最有價值的思想方法或例題,以及你還存在的未解決的問題,以便今后將其補上。
。2)建立數(shù)學(xué)糾錯本。把平時容易出現(xiàn)錯誤的知識或推理記載下來,以防再犯。爭取做到:找錯、析錯、改錯、防錯。達到:能從反面入手深入理解正確東西;能由果朔因把錯誤原因弄個水落石出、以便對癥下藥;解答問題完整、推理嚴(yán)密。
。3)熟記一些數(shù)學(xué)規(guī)律和數(shù)學(xué)小結(jié)論,使自己平時的運算技能達到了自動化或半自動化的熟練程度。
。4)經(jīng)常對知識結(jié)構(gòu)進行梳理,形成板塊結(jié)構(gòu),實行“整體集裝”,如表格化,使知識結(jié)構(gòu)一目了然;經(jīng)常對習(xí)題進行類化,由一例到一類,由一類到多類,由多類到統(tǒng)一;使幾類問題歸納于同一知識方法。
。5)閱讀數(shù)學(xué)課外書籍與報刊,參加數(shù)學(xué)學(xué)科課外活動與講座,多做數(shù)學(xué)課外題,加大自學(xué)力度,拓展自己的知識面。
。6)及時復(fù)習(xí),強化對基本概念知識體系的理解與記憶,進行適當(dāng)?shù)姆磸?fù)鞏固,消滅前學(xué)后忘。
。7)學(xué)會從多角度、多層次地進行總結(jié)歸類。如:①從數(shù)學(xué)思想分類②從解題方法歸類③從知識應(yīng)用上分類等,使所學(xué)的知識系統(tǒng)化、條理化、專題化、網(wǎng)絡(luò)化。
(8)經(jīng)常在做題后進行一定的“反思”,思考一下本題所用的基礎(chǔ)知識,數(shù)學(xué)思想方法是什么,為什么要這樣想,是否還有別的想法和解法,本題的分析方法與解法,在解其它問題時,是否也用到過。
。9)無論是作業(yè)還是測驗,都應(yīng)把準(zhǔn)確性放在第一位,通法放在第一位,而不是一味地去追求速度或技巧,這是學(xué)好數(shù)學(xué)的重要問題。
高二數(shù)學(xué)學(xué)習(xí)方法指導(dǎo)
高中數(shù)學(xué)的內(nèi)容多,抽象性、理論性強,因此不少同學(xué)進入高中之后很不適應(yīng)。進校后,代數(shù)里首先遇到的是理論性很強的函數(shù),再加上立體幾何,空間概念、空間想象能力又不可能一下子就建立起來,這就使一些初中數(shù)學(xué)學(xué)得還不錯的同學(xué)不能很快地適應(yīng)而感到困難,以下就怎樣學(xué)好高中數(shù)學(xué)談幾點意見和建議。 高中數(shù)學(xué)的理論性、抽象性強,就需要在對知識的理解上下功夫,要多思考,多研究。
一、關(guān)鍵是提高聽課的效率。
1.課前預(yù)習(xí)能提高聽課的針對性。預(yù)習(xí)中發(fā)現(xiàn)的難點,就是聽課的重點;對預(yù)習(xí)中遇到的沒有掌握好的有關(guān)的舊知識,可進行補缺,以減少聽課過程中的困難;有助于提高思維能力,預(yù)習(xí)后把自己理解了的東西與老師的講解進行比較、分析即可提高自己思維水平;預(yù)習(xí)還可以培養(yǎng)自己的自學(xué)能力。其次就是聽課要全神貫注。
2、特別注意講課的開頭和結(jié)尾。講課開頭,一般是概括前節(jié)課的要點指出本節(jié)課要講的內(nèi)容,是把舊知識和新知識聯(lián)系起來的環(huán)節(jié),結(jié)尾常常是對一節(jié)課所講知識的歸納總結(jié),具有高度的概括性,是在理解的基礎(chǔ)上掌握本節(jié)知識方法的綱要。另外,老師講課中常常對一些重點難點會作出某些語言、語氣、甚至是某種動作的提示。
3、最后一點就是作好筆記,筆記不是記錄而是將上述聽課中的要點,思維方法等作出簡單扼要的記錄,以便復(fù)習(xí),消化,思考。
二、做好復(fù)習(xí)和總結(jié)工作。
1、做好及時的復(fù)習(xí)。課完課的當(dāng)天,必須做好當(dāng)天的復(fù)習(xí)。復(fù)習(xí)的有效方法不是一遍遍地看書或筆記,而是采取回憶式的復(fù)習(xí):先把書,筆記合起來回憶上課老師講的內(nèi)容,例題:分析問題的思路、方法等(也可邊想邊在草稿本上寫一寫)盡量想得完整些。然后打開筆記
與書本,對照一下還有哪些沒記清的,把它補起來,就使得當(dāng)天上課內(nèi)容鞏固下來,同時也就檢查了當(dāng)天課堂聽課的效果如何,也為改進聽課方法及提高聽課效果提出必要的改進措施。
2、做好單元復(fù)習(xí)。學(xué)習(xí)一個單元后應(yīng)進行階段復(fù)習(xí),復(fù)習(xí)方法也同及時復(fù)習(xí)一樣,采取回憶式復(fù)習(xí),而后與書、筆記相對照,使其內(nèi)容完善,而后應(yīng)做好單元小節(jié)。
三、指導(dǎo)做一定量的練習(xí)題
有不少同學(xué)把提高數(shù)學(xué)成績的希望寄托在大量做題上。我認(rèn)為這是不妥當(dāng)?shù),我認(rèn)為,“不要以做題多少論英雄”,重要的不在做題多,而在于做題的效益要高。做題的目的在于檢查你學(xué)的知識,方法是否掌握得很好。如果你掌握得不準(zhǔn),甚至有偏差,那么多做題的結(jié)果,反而鞏固了你的缺欠,因此,要在準(zhǔn)確地把握住基本知識和方法的基礎(chǔ)上做一定量的練習(xí)是必要的。而對于中檔題,尢其要講究做題的效益,即做題后有多大收獲,這就需要在做題后進行一定的“反思”,思考一下本題所用的基礎(chǔ)知識,數(shù)學(xué)思想方法是什么,為什么要這樣想,是否還有別的想法和解法,本題的分析方法與解法,在解其它問題時,是否也用到過,把它們聯(lián)系起來,你就會得到更多的經(jīng)驗和教訓(xùn),更重要的是養(yǎng)成善于思考的好習(xí)慣,這將大大有利于你今后的學(xué)習(xí)。當(dāng)然沒有一定量(老師布置的作業(yè)量)的練習(xí)就不能形成技能,也是不行的。
高二數(shù)學(xué)學(xué)法指導(dǎo) 數(shù)學(xué)解題
1、反思解題本身是否正確
由于在解題的過程中,可能會出現(xiàn)這樣或那樣的錯誤,因此在解完一道題后就很有必要進行審查自己的解題是否混淆了概念,是否忽視了隱含條件,是否特殊代替一般,是否忽視特例,邏輯上是否有問題,運算是否正確,題目本身是否有誤等。這樣做是為了保證解題無誤,這是解題后最基本的要求,真正認(rèn)實到解題后思考的重要性。
2、反思有無其它解題方法
對于同一道題,從不同的角度去分析研究,可能會得到不同的啟示,從而引出多種不同的解
法,當(dāng)然,我們的目的不在于去湊幾種解法,而是通過不同的觀察側(cè)面,使我們的思維觸角伸向不同的方向,不同層次,發(fā)展學(xué)生的發(fā)散思維能力。
3、反思結(jié)論或性質(zhì)在解題中的作用
有些題目本身可能很簡單,但是它的結(jié)論或做完這道題目本身用到的性質(zhì)卻有廣泛的應(yīng)用,如果僅僅滿足于解答題目的本身,而忽視對結(jié)論或性質(zhì)應(yīng)用的思考、探索,那就可能會“揀到一粒芝麻,丟掉一個西瓜“。一道題中本身必然包含了具體的數(shù)學(xué)知識和方法,你要通過這道題把本題所蘊涵的知識和方法提煉出來,總結(jié)歸納.像函數(shù),研究的不外乎是定義域,值域,單調(diào)性,最值等.每做一個題就可以把這些東西復(fù)習(xí)一下,這樣才能對的起你做的題.
4、反思題目能否變換引申
改變題目的條件,會導(dǎo)出什么新結(jié)論;保留題目的條件結(jié)論能否進一步加強;條件作類似的變換,結(jié)論能擴大到一般等等。象這樣富有創(chuàng)造性的全方位思考,常常是發(fā)現(xiàn)新知識、認(rèn)識新知識的突破口。
5、反思解決問題的思維方法能否遷移
解完一道題目后,不妨深思一下解題程序,有時會突然發(fā)現(xiàn):這種解決問題的思維模式竟然體現(xiàn)了一訓(xùn)重要的數(shù)學(xué)思想方法,它對于解決一類問題大有幫助。這樣,有利于深化對數(shù)學(xué)知識和方法的認(rèn)識,真正領(lǐng)悟到數(shù)學(xué)的思想和知識的結(jié)構(gòu),促進其創(chuàng)造性思維能力的發(fā)展,從而充分發(fā)揮自己的智能和潛能。
文科生如何學(xué)好數(shù)學(xué)
對于文科生來說是個大難題,有些同學(xué)甚至“談數(shù)學(xué)色變”。其實只要掌握恰當(dāng)?shù)膶W(xué)習(xí)方法,文科生一樣可以學(xué)好數(shù)學(xué)并在高考中取得滿意的分?jǐn)?shù)。
杜絕負面的自我暗示
首先對數(shù)學(xué)學(xué)習(xí)不要抱有放棄的想法。
有些同學(xué)認(rèn)為數(shù)學(xué)差一點沒關(guān)系,只要在其他三門文科上多用功就可以把總分補回來,這種想法是非常錯誤的。教育界有一個“木桶原理”:一只木桶盛水量的多少取決于它最短的一塊木板。高考也是如此,只有各科全面發(fā)展才能取得好成績。
其次是要杜絕負面的自我暗示。高三一年會有許許多多的考試,不可能每一次都取得自己理想的成績。在失敗的時候不要有“我肯定沒希望了”、“我是學(xué)不好了”這樣的暗示,相反地,要對自己始終充滿信心,最終成功會來到你的身邊。
抄筆記別丟了“西瓜”
高考數(shù)學(xué)試卷中大部分的題目都是基礎(chǔ)題,只要把這些基礎(chǔ)題做好,分?jǐn)?shù)便不會低了。要想做好基礎(chǔ)題,平時上課時的聽課效率便顯得格外重要。一般教高三的都是有著豐富經(jīng)驗的老師,他們上課時的內(nèi)容可謂是精華,認(rèn)真聽講45分鐘要比自己在家復(fù)習(xí)兩個小時還要有效。
聽課時可以適當(dāng)?shù)刈鲂┕P記,但前提是不影響聽課的效果。有些同學(xué)光顧著抄筆記卻忽略了
老師解題的思路,這樣就是“撿了芝麻丟了西瓜”,反而有些得不償失。
題目最好做兩遍
要想學(xué)好數(shù)學(xué),平時的練習(xí)必不可少,但這并不意味著要進行題海戰(zhàn)術(shù),做練習(xí)也要講究科學(xué)性。在選擇參考書方面可以聽一下老師的意見,一般來說老師會根據(jù)自己的教學(xué)方式和進度給出一定的建議,數(shù)量基本在1―2本左右,不要太多。
在高考前的沖刺階段要保證1―2天做一套試卷來保持狀態(tài)。最重要的是要通過做題發(fā)現(xiàn)并解決自己已有的問題,總結(jié)出各類題目的解題方法并且熟練掌握。
在這里有兩個小建議:一是在做填空選擇題時可以在旁邊的空白處寫一些解題過程以方便以后復(fù)習(xí);二是題目最好做兩遍以上,可以加深印象。
應(yīng)考時要舍得放棄
對于大部分?jǐn)?shù)學(xué)基礎(chǔ)不是很扎實的同學(xué)來說,放棄最后兩題應(yīng)該是一個比較明智的選擇。 高考數(shù)學(xué)試卷的最后兩題對于能力的要求較高,數(shù)學(xué)較弱的同學(xué)不要花太多的時間在這里,而應(yīng)把精力放在前面的基礎(chǔ)題上,這樣成績反而會有所提高。高考的大題目都是按過程給分的,所以萬一遇到不會的題也不要空著,應(yīng)根據(jù)題意盡量多寫一些步驟。
在對待粗心這個常見問題上,我有兩個建議:一是少打草稿,把步驟都寫在試卷上;二是規(guī)范草稿,讓草稿一目了然,這樣便不太會出現(xiàn)看錯或抄錯的現(xiàn)象了。
考試中有時可以用計算器來提高解題速度解決難題,但在考試過后一定要把題目正規(guī)的解題思路了解清楚。每一次考試的試卷和高考前各區(qū)的模擬卷都是珍貴的復(fù)習(xí)資料,一定要妥善保存。
在選好參考書以后要認(rèn)真完整地做,每一本好的參考書都存在著一個知識體系,有些同學(xué)這本書做一點,那本書做一點,到最后做了許多本書但都沒有做完,無法形成一個完整的知識體系,效果反而不好。做題的時候要多做簡單題,并且要定好時間,這樣可以提高解題速度。 教你如何制定與執(zhí)行學(xué)習(xí)計劃
學(xué)習(xí)計劃的重要性不言而喻。學(xué)生分三種,不制定計劃的人,定了但不執(zhí)行的人,善于執(zhí)行計劃的人。
第一種學(xué)習(xí)被動性大,雖然也很忙,但時間是被填塞而不是被利用,常常被各種緊急但不重要的事情所打擾,如作業(yè)、考試等等,難以提到學(xué)習(xí)的全局性和效率。
第二種人在制定計劃過程中雄心萬丈,獲得極大滿足,但弱于執(zhí)行,計劃給變化讓路,又常常給自己的行為找借口,對自己失信,此類計劃的效果往往大打折扣。
第三種人學(xué)習(xí)時有全局觀,知道自己所做的事的意義是什么,心中常充滿了喜悅和滿足,并
且較為自信。
如何制定學(xué)習(xí)計劃?
以給數(shù)學(xué)這門學(xué)科制定學(xué)習(xí)計劃為例:
1.首先分析自己最近一張的數(shù)學(xué)卷子,或?qū)ψ约旱臄?shù)學(xué)綜合情況作分析(此方法尤適用于高三的學(xué)生),這張卷子我數(shù)學(xué)扣了多少分,是哪個地方錯了,反映了我哪個知識點沒學(xué)好,譬如說圓錐曲線中的橢圓。
2.自問:在下次考試前我要把這個知識點學(xué)好,下次考試與這次相隔多久?(或者說我要在幾日內(nèi)把橢圓學(xué)好?)假設(shè)兩次考試相隔一周。
3.同時列出學(xué)好這個知識點的步驟(舉例)a..先看書(從幾頁到幾頁)b.做課本的練習(xí)題(哪幾道題)c.再看書d.看以前相關(guān)知識的錯題。….等等。
4.將這幾步要做的事情(一定要很具體)按照個人的作息情況分配到這一周內(nèi)。(應(yīng)具體到某天的某一時段)
如此4步下來,一個有針對性地學(xué)習(xí)計劃就制定了。
這是微觀的學(xué)習(xí)計劃,宏觀的學(xué)習(xí)計劃步驟也是類似的,大家可以把最近的成績和一個月后的目標(biāo)值比較,根據(jù)差距制定你自己的目標(biāo)和時間分配計劃。
制定計劃時有一個重要的原則,也是一個著名的方法:
先做你最重要的事情。
如何復(fù)習(xí)高二數(shù)學(xué)學(xué)習(xí)
一、抓好基礎(chǔ)數(shù)學(xué)習(xí)題無非就是數(shù)學(xué)概念和數(shù)學(xué)思想的組合應(yīng)用,弄清數(shù)學(xué)基本概念、基本定理、基本方法是判斷題目類型、知識范圍的前提,是正確把握解題方法的依據(jù)。只有概念清楚,方法全面,遇到題目時,就能很快的得到解題方法,或者面對一個新的習(xí)題,就能聯(lián)想到我們平時做過的習(xí)題的方法,達到迅速解答。弄清基本定理是正確、快速解答習(xí)題的前提條件,特別是在立體幾何等章節(jié)的復(fù)習(xí)中,對基本定理熟悉和靈活掌握能使習(xí)題解答條理清楚、邏輯推理嚴(yán)密。反之,會使解題速度慢,邏輯混亂、敘述不清。
如何抓基礎(chǔ)?
1、看課本;
2、在做練習(xí)時遇到概念題是要對概念的內(nèi)涵和外延再認(rèn)識,注意從不同的側(cè)面去認(rèn)識、理解概念。
3、理解定理的條件對結(jié)論的約束作用,反問:如果沒有該條件會使定理的結(jié)論發(fā)生什么變
高二數(shù)學(xué)學(xué)習(xí)方法2
一、學(xué)習(xí)問題自我評價
每一個學(xué)習(xí)不良者并不一定真的了解自己的問題之所在,要想對癥下藥,解決問題,對學(xué)習(xí)問題進行自我評價便尤其顯得重要了。對學(xué)習(xí)問題可主要從如下幾方面進行自我評價:
l.時間安排問題
學(xué)習(xí)不良者應(yīng)該反省下列幾個問題:
(1)是否很少在學(xué)習(xí)前確定明確的目標(biāo),比如要在多少時間里完成多少內(nèi)容。
(2)學(xué)習(xí)是否常常沒有固定的時間安排。
(3)是否常拖延時間以至于作業(yè)都無法按時完成。
(4)學(xué)習(xí)計劃是否是從來都只能在開頭的幾天有效。
(5)一周學(xué)習(xí)時間是否不滿10小時。
(6)是否把所有的時問都花在學(xué)習(xí)上了。
2.注意力問題
(1)注意力完全集中的狀態(tài)是否只能保持10至15分鐘。
(2)學(xué)習(xí)時,身旁是否常有小說、雜志等使我分心的東西。
(3)學(xué)習(xí)時是否常有想入非非的體驗。
(4)是否常與人邊聊天邊學(xué)習(xí)。
3.學(xué)習(xí)興趣問題
(1)是否一見書本頭就發(fā)脹。
(2)是否只喜歡文科,而不喜歡理科。
(3)是否常需要強迫自己學(xué)習(xí)。
(4)是否從未有意識地強化自己的學(xué)習(xí)行為。
4.學(xué)習(xí)方法問題
(1)是否經(jīng)常采用題海戰(zhàn)來提高解題能力。
(2)是否經(jīng)常采用機械記憶法。
(3)是否從未向?qū)W習(xí)好的同學(xué)討教過學(xué)習(xí)方法。
(4)是否從不向老師請教問題。
(5)是否很少主動鉆研課外輔助讀物。
一般而言,回答上述問題,肯定的答案 (回答“是”)越多,學(xué)習(xí)的效率越低。每個有學(xué)習(xí)問題的學(xué)生都應(yīng)從上述四類問題中列出自己主要毛病,然后有針對性地進行治療。例如一個學(xué)生毛病是這樣的:在時間安排上,他總喜歡把任務(wù)拖到第二夫去做;在注意力問題上,他總喜歡在寢室里邊與人聊天邊讀書;在學(xué)習(xí)興趣上,他對專業(yè)課不感興趣,對旁系的某些課卻很感興趣;在學(xué)習(xí)方法上主要采用機械記憶法。這位學(xué)生的病一列出來,我們就能夠采取有效的治療措施了。
高二數(shù)學(xué)學(xué)習(xí)方法3
一、了解高中數(shù)學(xué)知識的特點
經(jīng)過初中三年的學(xué)習(xí),特別是中考前的復(fù)習(xí)、鞏固,同學(xué)們已經(jīng)熟練地掌握初中知識,并對其中一些數(shù)學(xué)思想、方法有所體會。而高中的知識無論從深度還是廣度上都比初中有所加強,因此在學(xué)習(xí)中感到有一定的困難也是正常的。解決的方法之一是我們首先要對高中知識的特點有所了解,做到心中有“數(shù)”。高中知識及其學(xué)習(xí)方法具有以下的特點:
1、概念的抽象性
進入高中后,同學(xué)們覺得數(shù)學(xué)的概念不易理解。的確,初中階段我們所學(xué)的概念很多都是從直觀例子或?qū)嶋H事物的關(guān)系中獲得感性認(rèn)識后才給出定義,而高中的概念的獲得則需要更多的理性思考。以函數(shù)概念為例,初中階段我們是考慮變量x,y之間的對應(yīng)關(guān)系,即對x每個值都有唯一的y對應(yīng);而高中再次接觸函數(shù)時,是從兩個非空數(shù)集A,B中的元素之間的對應(yīng)關(guān)系來考慮的。通過對比,我們還可以看到兩個階段中對函數(shù)的學(xué)習(xí)是有區(qū)別的。首先在符號表示上,初中只要求我們以具體的函數(shù)解析式如:等來表示函數(shù),而高中階段我們用更抽象的形式這個形式便于對函數(shù)的一般性質(zhì)進行研究;其次,在初中階段,學(xué)習(xí)過函數(shù)概念后,通過對具體函數(shù)的應(yīng)用來實現(xiàn)對函數(shù)概念的鞏固。而在高中階段則是通過對函數(shù)一般性質(zhì)的討論、應(yīng)用來實現(xiàn)對函數(shù)概念的深入理解和鞏固。
上述分析告訴我們,若能將初、高中的同一概念加以對比、我們就能夠?qū)Ω咧械某橄蟾拍罾斫獾酶鼮橥笍亍?/p>
2、語言的精煉性
從集合與函數(shù)這章開始,一些數(shù)學(xué)符號,如∩,∪,∈。Φ等等已初廣泛地運用,將繁冗的語言表示得即簡單又精確。例如,空集Φ可以表示方程無解;再如,設(shè)方程組的解集是F,方程的解集分別是與。若我們要表示出F、、之間的關(guān)系,用集合語言很容易,即。
3、知識的綜合性
高中數(shù)學(xué)每一章,每一節(jié)的知識都不是孤立的,章與章之間,節(jié)與節(jié)之間有密切的聯(lián)系,需要我們綜合運用。例如在我們學(xué)習(xí)了有關(guān)解不等式的內(nèi)容后,我們來看下列問題:已知三個不等式:要使?jié)M足不等式(3)的x值至少滿足不等式(1)和(2)中的一個,求a的取值范圍。
這個問題的分析,不僅涉及到不等式解的問題,還涉及到方程根的分布,函數(shù)在某一點的取值,幾個不等式解集之間取交還是取并等等,需要我們綜合利用學(xué)過的知識。
二、自覺架起數(shù)學(xué)知識的過渡橋梁
1、把握好集合的概念、性質(zhì)
集合知識是由初中向高中知識過渡的第一座橋梁。首先,集合的表法使初中所學(xué)的自然數(shù)集、有理數(shù)集、實數(shù)集等有關(guān)的知識的表示更為簡煉,從而簡化了后面復(fù)雜問題的表述;其次,集合間的關(guān)系運算可以更好地幫助我們理解新學(xué)的知識,例如對不等式的解或方程組的解的理解;第三,集合作為一種數(shù)學(xué)思想滲透于今后所要學(xué)習(xí)的許多知識中。因此在高中伊始學(xué)好有關(guān)集合的知識是十分重要的。
2、加強聯(lián)想與類比
高中知識與初中知識之間的聯(lián)系是十分密切的。高中的很多知識可以通過降維、降冪等形式轉(zhuǎn)化為初中的有關(guān)知識,但這需要我們能將它們加以類比、聯(lián)想。以幾何為例,初中平面幾何中我們有過證明正三角形內(nèi)任意一點到三邊的距離和等于三角形的高,通過面積和相等很容易證明。類比高中立體幾何,我們能否證明一個正面體內(nèi)任意一點到四個面的距離和等于該四面體的高呢?
其實同學(xué)們能夠看出這個問題與上面平面幾何的問題是十分類似的。這里是將二維的問題推廣到三維。二維的問題可以用面積解決,三維的問題我們能用什么辦法呢?也許用求體積的方法?有興趣的同學(xué)可以試一試。當(dāng)然,聯(lián)想、類比是以對知識的理解與掌握為前提的。
3、深化對數(shù)學(xué)計算的認(rèn)識
數(shù)學(xué)計算在中學(xué)各個階段的學(xué)習(xí)要求有所不同。高中階段要求的不再是簡單的應(yīng)用運算法則進行運算,而是要求在計算中掌握計算的方法,理解算理,如構(gòu)造法、拆項法、變量替換法、數(shù)學(xué)歸納法等的選擇與運用。
例如當(dāng)我們學(xué)習(xí)數(shù)列求和時遇到這樣的問題:“求1!+2!2+3!3+······+n!n的和”。顯然利用公式是無能為力的。這就需要我們構(gòu)造算法,不妨從通項n!n入手,找出它與(n+1)!、n!的關(guān)系,不難發(fā)現(xiàn)n!n=(n+1)!—n!,這樣運用拆項法解決了求此和的問題。
三、幾點學(xué)習(xí)建議
1、認(rèn)真閱讀教材
想只憑借課堂聽講就學(xué)好高中數(shù)學(xué),這對大多數(shù)同學(xué)來說是不太可能的。要求我們在課下認(rèn)真閱讀教材,在閱讀的同時還要勒于思考,只有這樣才能深入理解知識及知識的聯(lián)系。
2、理解、掌握、運用數(shù)學(xué)思想方法
數(shù)學(xué)思想方法是數(shù)學(xué)知識的精髓。初中階段同學(xué)們對綜合分析法、反證法等有了一些體會。與之相比,高中所涉及的數(shù)學(xué)思想方法要豐富得多。如:集合思想、函數(shù)思想、類比法、數(shù)學(xué)歸納法、分析法等常用的數(shù)學(xué)思想方法滲透于各部分知識中,都需要大家認(rèn)真體會。
3、注意知識之間的聯(lián)系
在日常的學(xué)習(xí)中要做到:
①注意思考不同數(shù)學(xué)知識之間的聯(lián)系;
②注意例題與習(xí)題間的聯(lián)系。弄清知識之間的邏輯關(guān)系,從而系統(tǒng)、靈活地掌握高中數(shù)學(xué)。
高二數(shù)學(xué)學(xué)習(xí)方法4
一、不等式的基本性質(zhì):
注意:(1)特值法是判斷不等式命題是否成立的一種方法,此法尤其適用于不成立的命題。
(2)注意課本上的幾個性質(zhì),另外需要特別注意:
、偃鬭b0,則 。即不等式兩邊同號時,不等式兩邊取倒數(shù),不等號方向要改變。
、谌绻麑Σ坏仁絻蛇呁瑫r乘以一個代數(shù)式,要注意它的正負號,如果正負號未定,要注意分類討論。
、蹐D象法:利用有關(guān)函數(shù)的圖象(指數(shù)函數(shù)、對數(shù)函數(shù)、二次函數(shù)、三角函數(shù)的圖象),直接比較大小。
④中介值法:先把要比較的代數(shù)式與0比,與1比,然后再比較它們的大小
二、均值不等式:兩個數(shù)的算術(shù)平均數(shù)不小于它們的幾何平均數(shù)。
基本應(yīng)用:①放縮,變形;
、谇蠛瘮(shù)最值:注意:①一正二定三相等;②積定和最小,和定積最大。
常用的方法為:拆、湊、平方;
三、絕對值不等式:
注意:上述等號=成立的條件;
四、常用的基本不等式:
(1)比較法:作差比較:
作差比較的步驟:
、抛鞑睿簩σ容^大小的兩個數(shù)(或式)作差。
、谱冃危簩Σ钸M行因式分解或配方成幾個數(shù)(或式)的完全平方和。
、桥袛嗖畹姆枺航Y(jié)合變形的結(jié)果及題設(shè)條件判斷差的符號。
注意:若兩個正數(shù)作差比較有困難,可以通過它們的平方差來比較大小。
。2)綜合法:由因?qū)Ч?/p>
(3)分析法:執(zhí)果索因;静襟E:要證只需證,只需證
(4)反證法:正難則反。
。5)放縮法:將不等式一側(cè)適當(dāng)?shù)姆糯蠡蚩s小以達證題目的。
放縮法的方法有:
、盘砑踊蛏崛ヒ恍╉,
、茖⒎肿踊蚍帜阜糯螅ɑ蚩s。
、抢没静坏仁,
。6)換元法:換元的目的就是減少不等式中變量,以使問題化難為易,化繁為簡,常用的換元有三角換元和代數(shù)換元。
(7)構(gòu)造法:通過構(gòu)造函數(shù)、方程、數(shù)列、向量或不等式來證明不等式;
高二數(shù)學(xué)學(xué)習(xí)方法5
1、反思解題本身是否正確
由于在解題的過程中,可能會出現(xiàn)這樣或那樣的錯誤,因此在解完一道題后就很有必要進行審查自己的解題是否混淆了概念,是否忽視了隱含條件,是否特殊代替一般,是否忽視特例,邏輯上是否有問題,運算是否正確,題目本身是否有誤等。這樣做是為了保證解題無誤,這是解題后最基本的要求,真正認(rèn)實到解題后思考的重要性。
2、反思有無其它解題方法
對于同一道題,從不同的角度去分析研究,可能會得到不同的啟示,從而引出多種不同的解法,當(dāng)然,我們的目的不在于去湊幾種解法,而是通過不同的觀察側(cè)面,使我們的思維觸角伸向不同的方向,不同層次,發(fā)展學(xué)生的發(fā)散思維能力。例如對函數(shù)Y=(X^2—1)/(X^2+1)求值域,那么我們做了判別式法后,想想還有哪些方法可以解決此問題呢?比如反函數(shù)法,換元法,分離變量法。把這些方法想到了最后一步就是拿出你的數(shù)學(xué)財富本,把這幾種方法總結(jié)一下,哪種數(shù)學(xué)模型的求值域可以用這種方法。
3、反思結(jié)論或性質(zhì)在解題中的作用
有些題目本身可能很簡單,但是它的結(jié)論或做完這道題目本身用到的性質(zhì)卻有廣泛的應(yīng)用,如果僅僅滿足于解答題目的本身,而忽視對結(jié)論或性質(zhì)應(yīng)用的思考、探索,那就可能會“揀到一粒芝麻,丟掉一個西瓜“。一道題中本身必然包含了具體的數(shù)學(xué)知識和方法,你要通過這道題把本題所蘊涵的知識和方法提煉出來,總結(jié)歸納。像函數(shù),研究的不外乎是定義域,值域,單調(diào)性,最值等。每做一個題就可以把這些東西復(fù)習(xí)一下,這樣才能對的起你做的題。
4、反思題目能否變換引申
改變題目的條件,會導(dǎo)出什么新結(jié)論;保留題目的條件結(jié)論能否進一步加強;條件作類似的變換,結(jié)論能擴大到一般等等。象這樣富有創(chuàng)造性的全方位思考,常常是發(fā)現(xiàn)新知識、認(rèn)識新知識的突破口。
5、反思解決問題的思維方法能否遷移
解完一道題目后,不妨深思一下解題程序,有時會突然發(fā)現(xiàn):這種解決問題的思維模式竟然體現(xiàn)了一訓(xùn)重要的數(shù)學(xué)思想方法,它對于解決一類問題大有幫助。這樣,有利于深化對數(shù)學(xué)知識和方法的認(rèn)識,真正領(lǐng)悟到數(shù)學(xué)的思想和知識的結(jié)構(gòu),促進其創(chuàng)造性思維能力的發(fā)展,從而充分發(fā)揮自己的智能和潛能。
高二數(shù)學(xué)學(xué)習(xí)方法6
1.請概括的說一下學(xué)習(xí)的方法:
曰:像做其他事一樣,學(xué)習(xí)數(shù)學(xué)要研究方法。我為你們推薦的方法是:超前學(xué)習(xí),展開聯(lián)想,多做總結(jié),找出合情合理。
2.請談?wù)劤皩W(xué)習(xí)的好處:
曰:首先,超前學(xué)習(xí)能挖掘出自身的潛力,培養(yǎng)自學(xué)能力。經(jīng)過超前學(xué)習(xí),會發(fā)現(xiàn)自己能獨立解決許多問題,對提高自信心,培養(yǎng)學(xué)習(xí)興趣很有幫助。
其次,夠消除對新知識的隱患。超前學(xué)習(xí)能夠發(fā)現(xiàn)在現(xiàn)有的基礎(chǔ)上,自己對新知識認(rèn)識的不妥之處。相反地,若直接聽別人說。似乎自己也能一開始就達到這種理解水平,實踐證明,并非這樣。
再次,超前學(xué)習(xí)中的有些內(nèi)容,當(dāng)時不能透徹理解,但經(jīng)過深思之后,即使擱置一邊,大腦也會潛意識加工。當(dāng)教師進度進行到這塊內(nèi)容時,我們做第二次理解,會深刻的多。
最后,超前學(xué)習(xí)能提高聽課質(zhì)量。超前學(xué)習(xí)以后,我們發(fā)現(xiàn)新知識中的多數(shù)自己完全可以理解。只有少數(shù)地方需借助于別人。這樣,在課堂上,我們即能將可以集中注意力的時間放這少數(shù)地方的理解上,即好鋼用在刀刃上。事實上,一節(jié)課,能集中注意力的時間并不太多。
3.請談?wù)劼?lián)想與總結(jié)。
曰:聯(lián)想與總結(jié)貫穿與學(xué)習(xí)過程中的始終。對每一知識的認(rèn)識,必定要有認(rèn)識基礎(chǔ)。尋找認(rèn)識基礎(chǔ)的過程即是聯(lián)想,而認(rèn)識基礎(chǔ)的是對以前知識的總結(jié)。以前總結(jié)的越簡潔、清晰、合理,越容易聯(lián)想。這樣就可以把新知識熔進原來的知識結(jié)構(gòu)中為以后的某次聯(lián)想奠定基礎(chǔ)。聯(lián)想與總結(jié)在解題中特別有效。也許你以前并沒有這樣的認(rèn)識,但解題能力卻很強,這說明你很聰明,你在不自覺中使用這種做法。如果你能很明確的認(rèn)識這一點,你的能力會更強。
4.那么我們怎樣預(yù)習(xí)呢?
曰:先說說學(xué)習(xí)的目標(biāo):
(1)知道知識產(chǎn)生的背景,弄清知識形成的過程。
(2)或早或晚的知道知識的地位和作用:
(3)總結(jié)出認(rèn)識問題的規(guī)律(或說出認(rèn)識問題使用了以前的什么規(guī)律)。
再說具體的做法:
(1)對概念的理解。數(shù)學(xué)具有高度的抽象性。通常要借助具體的東西加以理解。有時借助字面的含義:有時借助其他學(xué)科知識。有時借助圖形理解概念的最高境界是意會。一定要在理解概念上下一番苦功夫后再做題。
(2)對公式定理的預(yù)習(xí),公式定理是使用最多的規(guī)律的總結(jié)。如:完全平方公式,勾股定理等。往往公式的推導(dǎo)定理的證明蘊含著豐富的數(shù)學(xué)方法及相當(dāng)有用的解題規(guī)律。如三角形內(nèi)角平分線定理的證明。我們應(yīng)當(dāng)先自己推導(dǎo)公式或證明定理,若做不成再參考別人的做法。無論是自己完成的,還是看別人的,都要說出這樣做是怎樣想出來的。
(3)對于例題及習(xí)題的處理見上面的(2)及下面的第五條。
5.請你再談?wù)勱P(guān)于做題。
曰:做題是學(xué)好數(shù)學(xué)的必要條件。題不在多而在精。你們要注重對基本題解決方法的挖掘和解題規(guī)律的總結(jié)。如解不等:0由分子分母異號可化為或去分母化為兩個一次不不等式組。它包含了一般的解不等式的思考、解決方法。有時你們會遇到很難解的題。如果做不出來,可模仿別人,但模仿的不僅僅是形式,更重要的是人家的思考方法,為什么必然發(fā)生一樣。就是說,每作一道題都要說出想法,是哪條規(guī)律指導(dǎo)著你?具體的做法可落實在一題多解,一法多用,一題多變上,這些最能鍛煉你從多角度思考問題、與其他知識建立聯(lián)系的能力。
經(jīng)過精心的整理,有關(guān)高二數(shù)學(xué)學(xué)習(xí):高手為您講解高二數(shù)學(xué)學(xué)習(xí)方法的內(nèi)容已經(jīng)呈現(xiàn)給大家,祝大家學(xué)習(xí)愉快!
高二數(shù)學(xué)學(xué)習(xí)方法7
在中學(xué),數(shù)、理、化是課程中最重要的一部分,如果數(shù)學(xué)學(xué)不好,那么物理、化學(xué)也不可能學(xué)好。在理工科大學(xué)中,數(shù)學(xué)更是一個基礎(chǔ)。在工農(nóng)業(yè)生產(chǎn)中,我們都希望能夠多、快、好、省地完成任務(wù)。例如,在現(xiàn)有條件中,如何合理安排生產(chǎn)過程,使產(chǎn)量最好,使消耗費用最小,而又在最短時間內(nèi)完成任務(wù),就存在有大量的數(shù)學(xué)理論和計算問題。所以,數(shù)學(xué)在我們社會主義建設(shè)中能夠并且應(yīng)該起很大作用。
有的同學(xué)問我學(xué)數(shù)學(xué)有什么秘訣?我覺得學(xué)習(xí)上沒有捷徑好走,也無秘訣可言,要說有,那就是,首先要有決心、信心和恒心。扎扎實實地打好基礎(chǔ),練好基本功。從一點一滴做起,日積月累逐步有所提高。在學(xué)習(xí)中不可平均使用力量,而要把勁特別用在一門新功課,一個新篇章的'開頭,用再最基本的內(nèi)容上。例如,一個中學(xué)生加、減、乘、除經(jīng)常算錯,那他就不可能學(xué)好代數(shù)、三角、幾何、物理、化學(xué)等課程。所以加、減、乘、除,就是一個基礎(chǔ)。打好扎實的基礎(chǔ),要循序漸進,自然科學(xué),特別是數(shù)學(xué),有很強的系統(tǒng)性和連貫性,只有把前面的基礎(chǔ)打牢,才好進入后一步,只有一步一個腳印,學(xué)得扎扎實實,才可能逐步提高,最后才有希望達到科學(xué)的頂峰。
第二,要注意獨立思考。拿數(shù)學(xué)來說,它是一門著重于理解的學(xué)科,在學(xué)習(xí)中要防止不求甚解的傾向,一定要勤分析、多思考。對每部分內(nèi)容,每個問題,要從正面、反面各個角度多想想,要善于找出它們之間的聯(lián)系,總結(jié)出規(guī)律性的東西。
另外,不要一遇到不會的東西就馬上去問別人,自己不動腦子,專門依賴別人,要先自己認(rèn)真地思考一下,這樣就可能依靠自己的努力,克服其中的某些困難,對經(jīng)過很大努力仍不能解決的問題,再虛心地請教別人,這樣才能對自己有更大的幫助和鍛煉。
第三,學(xué)習(xí)態(tài)度要端正,要注意培養(yǎng)良好的習(xí)慣,刻苦鉆研,要做到專心致志。例如,有些同學(xué),一邊看電視,一邊看數(shù)學(xué)書或算習(xí)題,這樣的效率一定是很低的。所以,不論復(fù)習(xí)、做題、閱讀參考書籍都要精力集中,要爭分奪妙,切忌分心。學(xué)習(xí)中還要養(yǎng)成嚴(yán)肅認(rèn)真、踏踏實實的好學(xué)風(fēng),不要好高鶩遠,更不能夸夸其談。
第四,知識面要寬些,基礎(chǔ)要打扎實。前些年,在學(xué)習(xí)上出現(xiàn)了一些偏差,有的同學(xué)以為學(xué)好數(shù)理化就行了,至于語文學(xué)得好不好無所謂,這種看法是錯誤的。有的理科大學(xué)生數(shù)理化還好,但寫實驗報告文理不通,錯別字很多,這樣,即使你很有創(chuàng)造性,別人還是看不懂。數(shù)理化固然重要,但語文(包括外語)卻是各門學(xué)科最基本的工具。語文學(xué)得好,閱讀寫作能力提高了,就有助于學(xué)好其他學(xué)科,有助于知識的積累和思路的敞開。
以上是我的一點粗淺的體會,供同學(xué)們參考。
高二數(shù)學(xué)學(xué)習(xí)方法8
考察主要還是基礎(chǔ),難題也不過是在簡單題的基礎(chǔ)上加以綜合。所以課本上的內(nèi)容是很重要的,如果課本上的都不能掌握,就沒有觸類旁通的資本。
對課本上的內(nèi)容,上課之前最好能夠首先一下,否則上課時有一個知識點沒有跟上的步驟,下面的就不知所以然了,如此惡性循環(huán),就會開始厭煩數(shù)學(xué),對來說是很重要的。課后針對性的練習(xí)題一定要認(rèn)真做,不能偷懶,高中語文,也可以在課后時把例題反復(fù)演算幾遍,畢竟上課的時候,是在進行題目的演算和講解,在聽,這是一個比較機械、比較被動的接受知識的過程。也許你認(rèn)為自己在上聽懂了,但實際上你對于解題的理解還沒有達到一個比較深入的程度,并且非常容易忽視一些真正的解題過程中必定遇到的難點。“好腦子不如賴筆頭”。對于數(shù)理化題目的解法,光靠腦子里的大致想法是不夠的,一定要經(jīng)過周密的筆頭計算才能夠發(fā)現(xiàn)其中的難點并且掌握化解,最終得到正確的計算結(jié)果。
其次是要善于總結(jié)歸類,尋找不同的題型、不同的知識點之間的共性和聯(lián)系,把學(xué)過的知識系統(tǒng)化。舉個具體的例子:代數(shù)的函數(shù)部分,我們學(xué)習(xí)了指數(shù)函數(shù)、對數(shù)函數(shù)、冪函數(shù)、三角函數(shù)等好幾種不同類型的函數(shù)。但是把它們對比著總結(jié)一下,你就會發(fā)現(xiàn)無論哪種函數(shù),我們需要掌握的都是它的表達式、圖象形狀、奇偶性、增減性和對稱性。那么你可以將這些函數(shù)的上述內(nèi)容制作在一張大表格中,對比著進行理解和。在解題時注意函數(shù)表達式與圖形結(jié)合使用,必定會收到好得多的效果。
最后就是要加強課后練習(xí),除了作業(yè)之外,找一本好的參考書,盡量多做一下書上的練習(xí)題(尤其是綜合題和應(yīng)用題)。熟能生巧,這樣才能鞏固課堂學(xué)習(xí)的效果,使你的解題速度越來越快。
高二數(shù)學(xué)學(xué)習(xí)方法9
培養(yǎng)濃厚的興趣
高中的數(shù)學(xué)概念抽象、習(xí)題繁多、教學(xué)密度大,因此,高一過后,一些同學(xué)對數(shù)學(xué)望而生畏。
數(shù)學(xué)的學(xué)習(xí)其實不會很難,關(guān)鍵是你是否愿意去嘗試。當(dāng)你敢于猜想,說明你擁有數(shù)學(xué)的思維能力;而當(dāng)你能驗證猜想,則說明你已具備了學(xué)習(xí)數(shù)學(xué)的天賦!認(rèn)真地學(xué)好高二數(shù)學(xué),你能領(lǐng)悟到的還有:怎么用最少的材料做滿足要求的物件;如何配置資源并投入生產(chǎn)才能獲得最多利潤;優(yōu)美的曲線為什么可以和代數(shù)方程式建立起關(guān)系;為什么出車禍比體彩中獎容易得多;為什么一個年段的各個班級常常出現(xiàn)生日相同的同學(xué)……
當(dāng)你陷入數(shù)學(xué)魅力的“圈套”后,你已經(jīng)開始走上學(xué)好數(shù)學(xué)的第一步!
培養(yǎng)分析、推斷能力
其實,數(shù)學(xué)不是知識性。經(jīng)驗性的學(xué)科,而是思維性的學(xué)科,高中數(shù)學(xué)就充分體現(xiàn)了這一特點。所以,數(shù)學(xué)的學(xué)習(xí)重在培養(yǎng)觀察、分析和推斷能力,開發(fā)學(xué)習(xí)者的創(chuàng)造能力和創(chuàng)新思維。因此,在學(xué)習(xí)數(shù)學(xué)的過程中,要有意識地培養(yǎng)這些能力。
關(guān)于學(xué)習(xí)方法和效果的關(guān)系,可以這樣描述:當(dāng)你愿意去看懂部分題目的答案時,你的考試成績應(yīng)該可以輕松及格;當(dāng)你熱衷于研究各種題型,,定期做出小結(jié)的時候,你一定是班級數(shù)學(xué)方面的優(yōu)等生;而當(dāng)你習(xí)慣根據(jù)數(shù)學(xué)定義自己出題,并解決它,你的數(shù)學(xué)水平已經(jīng)可以和你的老師并駕齊驅(qū)了!
嘗試這些學(xué)習(xí)方法
學(xué)習(xí)程度不同的學(xué)生需要不同的學(xué)習(xí)方法。
如果你正因為數(shù)學(xué)的學(xué)習(xí)狀態(tài)低迷而苦惱,請按如下要求去做:預(yù)習(xí)后,帶著問題走進課堂,能讓你的學(xué)習(xí)事半功倍;想要做出完美的作業(yè)是無知的,出錯并認(rèn)真訂正才更合理;老師要求的練習(xí)并不是“題!保堈J(rèn)真完成,少動筆而能學(xué)好數(shù)學(xué)的天才即使有 高中生物,也不是你;考試時,正確率和做題的速度一樣重要,但是合理地放棄某些題目的想法能幫助你發(fā)揮正常水平。
如果你正因為數(shù)學(xué)的學(xué)習(xí)成績進步緩慢而郁悶,請接受如下建議:收集你自己做過的錯題,訂正并寫清錯誤的原因,這些材料是屬于你個人的財富;對于考試成績,給自己定一個能接受的底線,定一個力所能及的奮斗目標(biāo);合理的作息時間和良好的學(xué)習(xí)習(xí)慣將有助你獲得穩(wěn)定的學(xué)習(xí)成績,所以,請制定好學(xué)習(xí)計劃并努力堅持;把很多時間投入到一個科目中去,不如把學(xué)習(xí)精力合理分配給各個學(xué)科。人對于某一知識領(lǐng)域的學(xué)習(xí)常出現(xiàn)“高原現(xiàn)象”,就是說當(dāng)達到一定程度,再努力時,進步開始不明顯。
高二數(shù)學(xué)學(xué)習(xí)方法10
1.課前預(yù)習(xí)教材。課前可以把教材上第二天老師要講的內(nèi)容看一下,看看哪些能看懂,哪些不懂。這樣老師在講課的時候我們就能帶著問題去聽,把自己沒看懂的問題聽懂。
2.上課專心聽講。這是很重要的,很多同學(xué)以為自己什么都弄懂了,就自己做自己的題目。其實即使是自己看懂了的,也可以看看老師也沒有另外的理解方法,老師的方法是不是比自己好。聽老師有時候講比自己看更好。
3.課后認(rèn)真復(fù)習(xí)。剛學(xué)的知識,還沒完全被消化吸收成為自己的知識,如果不及時復(fù)習(xí),就很容易忘記。所以,課后一定要抽出一些時間,及時對所學(xué)進行鞏固。
4.公式定理牢記。高中數(shù)學(xué)很多題目就是各種公式定理的理解與應(yīng)用,不牢記就別談做題。
5.通過習(xí)題鞏固。數(shù)學(xué)是理科,需要通過一定量的習(xí)題來鞏固,量變積累到了一定量才能質(zhì)變嘛。這個并非要各位打題海戰(zhàn)術(shù),只要求各位做到熟練為止。
6.錯題反復(fù)研究。自己準(zhǔn)備一個錯題本,把考試時候做錯的題目記錄下來,寫上做錯的原因,反復(fù)研究,避免再次出錯。
高二數(shù)學(xué)學(xué)習(xí)方法11
一、溫故法
學(xué)習(xí)新概念前,如果能對孩子認(rèn)知結(jié)構(gòu)中原有的適當(dāng)概念作一些結(jié)構(gòu)上的變化來引進新概念,則有利于促進新概念的形成。
二、操作法
對有些概念的教學(xué),可以從感性材料出發(fā),讓孩子在操作中去發(fā)現(xiàn)概念的發(fā)生和發(fā)展過程。
三、類比法
這種方法有利于分析兩相關(guān)概念的異同,歸納出新授內(nèi)容有關(guān)知識;有利于幫助孩子架起新、舊知識的橋梁,促進知識遷移,提高探索能力。
四、喻理法
為正確理解某一概念,以實例或生活中的趣事、典故作比喻,引出新概念。
五、置疑法
這種方法是通過揭示教學(xué)自身的矛盾來引入概念,以突出引進新概念的必要性和合理性,調(diào)動孩子了解新概念的強烈的動機和愿望。
六、創(chuàng)境法
如在講相遇問題時,為讓孩子對相向運動的各種可能的情況有所感受,可以從研究"鼓掌時兩只手怎樣運動"開始。通過拍手體驗,在邊問、邊議中逐步講解。實踐證明,如此使孩子猶如身臨其境去體驗并理解有關(guān)知識,能很快準(zhǔn)確地掌握相關(guān)的數(shù)學(xué)概念。
高二數(shù)學(xué)學(xué)習(xí)方法12
高二是高中學(xué)習(xí)的關(guān)鍵時期,不僅課程任務(wù)重,而且很大程度上決定著學(xué)生今后的發(fā)展方向,以及能否考入理想的大學(xué)。有著豐富教學(xué)經(jīng)驗的老師,向大家傳授高二各學(xué)科學(xué)習(xí)技巧,希望對高二學(xué)生掌握良好的學(xué)習(xí)方法、提高學(xué)習(xí)效率有所幫助。以下是數(shù)學(xué)學(xué)科的主要學(xué)習(xí)方法。
【數(shù)學(xué)】重在培養(yǎng)觀察、分析和推斷能力
關(guān)于學(xué)習(xí)方法和效果的關(guān)系,可以這樣描述:當(dāng)你愿意去看懂部分題目的答案時,你的考試成績應(yīng)該可以輕松及格;當(dāng)你熱衷于研究各種題型,,定期做出小結(jié)的時候,你一定是班級數(shù)學(xué)方面的優(yōu)等生;而當(dāng)你習(xí)慣根據(jù)數(shù)學(xué)定義自己出題,并解決它,你的數(shù)學(xué)水平已經(jīng)可以和你的老師并駕齊驅(qū)了!
嘗試這些學(xué)習(xí)方法
學(xué)習(xí)程度不同的學(xué)生需要不同的學(xué)習(xí)方法。
如果你正因為數(shù)學(xué)的學(xué)習(xí)狀態(tài)低迷而苦惱,請按如下要求去做:預(yù)習(xí)后,帶著問題走進課堂,能讓你的學(xué)習(xí)事半功倍;想要做出完美的作業(yè)是無知的,出錯并認(rèn)真訂正才更合理;老師要求的練習(xí)并不是"題海",請認(rèn)真完成,少動筆而能學(xué)好數(shù)學(xué)的天才即使有,也不是你;考試時,正確率和做題的速度一樣重要,但是合理地放棄某些題目的想法能幫助你發(fā)揮正常水平。
如果你正因為數(shù)學(xué)的學(xué)習(xí)成績進步緩慢而郁悶,請接受如下建議:收集你自己做過的錯題,訂正并寫清錯誤的原因,這些材料是屬于你個人的財富;對于考試成績,給自己定一個能接受的底線,定一個力所能及的奮斗目標(biāo);合理的作息時間和良好的學(xué)習(xí)習(xí)慣將有助你獲得穩(wěn)定的學(xué)習(xí)成績,所以,請制定好學(xué)習(xí)計劃并努力堅持;把很多時間投入到一個科目中去,不如把學(xué)習(xí)精力合理分配給各個學(xué)科。人對于某一知識領(lǐng)域的學(xué)習(xí)常出現(xiàn)"高原現(xiàn)象",就是說當(dāng)達到一定程度,再努力時,進步開始不明顯。
高二數(shù)學(xué)學(xué)習(xí)方法13
數(shù)學(xué),數(shù)學(xué)是讓很多理科和文科學(xué)生頭疼的科目。我也不好把握它應(yīng)該怎么學(xué)習(xí),但是最近我確實償?shù)搅藢W(xué)習(xí)的快樂。我是這樣學(xué)習(xí)的。
數(shù)學(xué)重要的課本的見解和例題,大家要把握好這個點,一定要注意課本,就是說你剛剛學(xué)完一節(jié),作習(xí)題時如果沒有思路,你就要好好的回憶課本講了什么,要做到課本與習(xí)題的巧妙結(jié)合。
建議高一高二的同學(xué),分幾步走。
要課前預(yù)習(xí),很多書都這么說,可是很多同學(xué)都不屑,但是我要告訴你,如果您能落實好預(yù)習(xí),你的數(shù)學(xué)就可以好一半,你預(yù)習(xí)時的態(tài)度要端正,不是看一遍書就完事,而是要認(rèn)真的思考,看看講解的內(nèi)容和例題是怎么聯(lián)系的。然后看懂后就做書上習(xí)題,不要小看書的習(xí)題,進幾年高考題目有好多都是根據(jù)書的習(xí)題改的,這個要做好的。一定要做出數(shù)來,對照答案。
其次要上課認(rèn)真聽講,看看老師是怎么演繹數(shù)學(xué)的,看看老師的說法和你預(yù)習(xí)時的一樣不,最好記下老師的例題,這例題絕對經(jīng)典,可以當(dāng)作對象研究的。
最后就是要課下的習(xí)題,認(rèn)真的完成老師布置的作業(yè),體會課上所講的內(nèi)容,不會的及時問老師。還有就是課外的練習(xí)冊最好別買,因為根據(jù)我上了高三的經(jīng)驗,買的就是浪費的,千萬別買!如果你覺得沒有事情做了,那么你就學(xué)習(xí)英語和語文吧!這兩科如果學(xué)好了,高三都可以不用復(fù)習(xí)的。
但是大家要記住,數(shù)學(xué)必須把問題全部落實,不能拖。還要和老師及時的溝通哦。
數(shù)學(xué)復(fù)習(xí)必須掌握的3個方法
數(shù)學(xué)是三大主科之一,所占分值比例大,可以說是在考試中最容易拿分也可以說最容易失分的一個科目,讀題粗心大意的學(xué)生,往往就丟失不必要的分?jǐn)?shù),并且這個科目考生也最忌心浮氣躁,需要靜下心來 高一,仔細閱題,由易而難做下來。數(shù)學(xué)是一門講理的學(xué)科,具有很強的邏輯性。相對于初中數(shù)學(xué)來說,高中數(shù)學(xué)明顯難了很多。因此,很多原本在初中數(shù)學(xué)成績很好的同學(xué),到了高中就明顯感到吃力。那么針對20xx年高考數(shù)學(xué)學(xué)生該如何應(yīng)對,考前需要做哪些準(zhǔn)備?解題時需要掌握哪方面技巧,才會讓自己不易失分?
數(shù)學(xué)考試答題技巧,可以采用數(shù)形結(jié)合、直接對照法、篩選法等。
數(shù)形結(jié)合法:“數(shù)”與“形”是數(shù)學(xué)這座高樓大廈的兩塊最重要的基石,二者在內(nèi)容上互相聯(lián)系、在方法上互相滲透、在一定條件下可以互相轉(zhuǎn)化,而數(shù)形結(jié)合法正是在這一學(xué)科特點的基礎(chǔ)上發(fā)展而來的。在解答選擇題的過程中,可以先根據(jù)題意,做出草圖,然后參照圖形的做法、形狀、位置、性質(zhì),綜合圖象的特征,得出結(jié)論。用這種方法,既方便解題又容易讓人明白。
高二數(shù)學(xué)學(xué)習(xí)方法14
高一升高二數(shù)學(xué)學(xué)習(xí)方法和計劃
和高一數(shù)學(xué)相比,高二數(shù)學(xué)的內(nèi)容更多,抽象性、理論性更強,因此不少同學(xué)進入高二之后很不適應(yīng)。代數(shù)里首先遇到的是理論性很強的曲線方程,再加上立體幾何,空間概念、空間想象能力又不可能一下子就建立起來,這就使一些高一數(shù)學(xué)學(xué)得還不錯的同學(xué)不能很快地適應(yīng)而感到困難,以下就怎樣學(xué)好高二數(shù)學(xué)談幾點意見和建議。
培養(yǎng)濃厚的興趣:
高中數(shù)學(xué)的學(xué)習(xí)其實不會很難,關(guān)鍵是你是否愿意去嘗試.當(dāng)你敢于猜想,說明你擁有數(shù)學(xué)的思維能力;而當(dāng)你能驗證猜想,則說明你已具備了學(xué)習(xí)數(shù)學(xué)的天賦!認(rèn)真地學(xué)好高二數(shù)學(xué),你能領(lǐng)悟到的還有:怎么用最少的材料做滿足要求的物件;如何配置資源并投入生產(chǎn)才能獲得最多利潤;優(yōu)美的曲線為什么可以和代數(shù)方程建立起關(guān)系;為什么出車禍比體育中獎容易得多;為什么一個年段的各個班級常常出現(xiàn)生日相同的同學(xué)??
當(dāng)你陷入數(shù)學(xué)魅力的"圈套"后,你已經(jīng)開始走上學(xué)好數(shù)學(xué)的第一步!
培養(yǎng)分析,推斷能力:
其實,數(shù)學(xué)不是知識性,經(jīng)驗性的學(xué)科,而是思維性的學(xué)科,高中數(shù)學(xué)就充分體現(xiàn)了這一特點.所以,數(shù)學(xué)的學(xué)習(xí)重在培養(yǎng)觀察,分析和推斷能力,開發(fā)學(xué)習(xí)者的創(chuàng)造能力和創(chuàng)新思維.因此,在學(xué)習(xí)數(shù)學(xué)的過程中,要有意識地培養(yǎng)這些能力.
關(guān)于學(xué)習(xí)方法和效果的關(guān)系,可以這樣描述:當(dāng)你愿意去看懂大部分題目的答案時,你的考試成績應(yīng)該可以輕松及格;當(dāng)你熱衷于研究各種題型,定期做出小結(jié)的時候,你一定是班級數(shù)學(xué)方面的優(yōu)等生;而當(dāng)你習(xí)慣根據(jù)數(shù)學(xué)定義自己出題,并解決它,你的數(shù)學(xué)水平已經(jīng)可以和你的老師并駕齊驅(qū)了!
學(xué)習(xí)程度不同的學(xué)生需要不同的學(xué)習(xí)方法:
如果你正因為數(shù)學(xué)的學(xué)習(xí)狀態(tài)低迷而苦惱,請按如下要求去做:預(yù)習(xí)后,帶著問題走進課堂,能讓你的學(xué)習(xí)事半功倍;想要做出完美的作業(yè)是無知的,出錯并認(rèn)真訂正才更合理;老師要求的練習(xí)并不是"題海",請認(rèn)真完成,少動筆而能學(xué)好數(shù)學(xué)的天才即使有,也不是你;考試時,正確率和做題的速度一樣重要,但是合理地放棄某些題目的想法能幫助你發(fā)揮正常水平.
如果你正因為數(shù)學(xué)的學(xué)習(xí)成績進步緩慢而郁悶,請接受如下建議:收集你自己做過的錯題,訂正并寫清錯誤的原因,這些材料是屬于你個人的財富;對于考試成績,給自己定一個能接受的底線,定一個力所能及的奮斗目標(biāo);合理的作息時間和良好的學(xué)習(xí)習(xí)慣將有助你獲得穩(wěn)定的學(xué)習(xí)成績,所以,請制定好學(xué)習(xí)計劃并努力堅持;把很多時間投入到一個科目中去,不如把學(xué)習(xí)精力合理分配給各個學(xué)科.人對于某一知識領(lǐng)域的學(xué)習(xí)常出現(xiàn)"高原現(xiàn)象",就是說當(dāng)達到一定程度,再努力時,進步開始不明顯.
下列學(xué)習(xí)方法比較經(jīng)典:
一、提高聽課的效率是關(guān)鍵。
1.課前預(yù)習(xí)能提高聽課的針對性。預(yù)習(xí)中發(fā)現(xiàn)的難點,就是聽課的重點;對預(yù)習(xí)中遇到的沒有掌握好的有關(guān)的舊知識,可進行補缺,以減少聽課過程中的困難;有助于提高思維能力,預(yù)習(xí)后把自己理解了的東西與老師的講解進行比較、分析即可提高自己思維水平;預(yù)習(xí)還可以培養(yǎng)自己的自學(xué)能力。其次就是聽課要全神貫注。
2、特別注意講課的開頭和結(jié)尾。講課開頭,一般是概括前節(jié)課的要點指出本節(jié)課要講的內(nèi)容,是把舊知識和新知識聯(lián)系起來的環(huán)節(jié),結(jié)尾常常是對一節(jié)課所講知識的歸納總結(jié),具有高度的概括性,是在理解的基礎(chǔ)上掌握本節(jié)知識方法的綱要。另外,老師講課中常常對一些重點難點會作出某些語言、語氣、甚至是某種動作的提示。
3、最后一點就是作好筆記,筆記不是記錄而是將上述聽課中的要點,思維方法等作出簡單扼要的記錄,以便復(fù)習(xí),消化,思考。
二、做好復(fù)習(xí)和總結(jié)工作。
1、做好及時的復(fù)習(xí)。課完課的當(dāng)天,必須做好當(dāng)天的復(fù)習(xí)。復(fù)習(xí)的有效方法不是一遍遍地看書或筆記,而是采取回憶式的復(fù)習(xí):先把書,筆記合起來回憶上課老師講的內(nèi)容,例題:分析問題的思路、方法等(也可邊想邊在草稿本上寫一寫)盡量想得完整些。然后打開筆記與書本,對照一下還有哪些沒記清的,把它補起來,就使得當(dāng)天上課內(nèi)容鞏固下來,同時也就檢查了當(dāng)天課堂聽課的效果如何,也為改進聽課方法及提高聽課效果提出必要的改進措施。
2、做好單元復(fù)習(xí)。學(xué)習(xí)一個單元后應(yīng)進行階段復(fù)習(xí),復(fù)習(xí)方法也同及時復(fù)習(xí)一樣,采取回憶式復(fù)習(xí),而后與書、筆記相對照,使其內(nèi)容完善,而后應(yīng)做好單元小節(jié)。
三、指導(dǎo)做一定量的練習(xí)題
有不少同學(xué)把提高數(shù)學(xué)成績的希望寄托在大量做題上。我認(rèn)為這是不妥當(dāng)?shù),我認(rèn)為,“不要以做題多少論英雄”,重要的不在做題多,而在于做題的效益要高。做題的目的在于檢查你學(xué)的知識,方法是否掌握得很好。如果你掌握得不準(zhǔn),甚至有偏差,那么多做題的結(jié)果,反而鞏固了你的缺欠,因此,要在準(zhǔn)確地把握住基本知識和方法的基礎(chǔ)上做一定量的練習(xí)是必要的。而對于中檔題,尢其要講究做題的效益,即做題后有多大收獲,這就需要在做題后進行一定的“反思”,思考一下本題所用的基礎(chǔ)知識,數(shù)學(xué)思想方法是什么,為什么要這樣想,是否還有別的想法和解法,本題的分析方法與解法,在解其它問題時,是否也用到過,把它們聯(lián)系起來,你就會得到更多的經(jīng)驗和教訓(xùn),更重要的是養(yǎng)成善于思考的好習(xí)慣,這將大大有利于你今后的學(xué)習(xí)。當(dāng)然沒有一定量(老師布置的作業(yè)量)的練習(xí)就不能形成技能,也是不行的。
高二數(shù)學(xué)學(xué)習(xí)方法15
1.求導(dǎo)法則:
(c)/=0 這里c是常數(shù)。即常數(shù)的導(dǎo)數(shù)值為0。
(xn)/=nxn-1 特別地:(x)/=1 (x-1)/= ( )/=-x-2 (f(x)±g(x))/= f/(x)±g/(x) (k?f(x))/= k?f/(x)
2.導(dǎo)數(shù)的幾何物理意義:
k=f/(x0)表示過曲線y=f(x)上的點P(x0,f(x0))的切線的斜率。
V=s/(t) 表示即時速度。a=v/(t) 表示加速度。
3.導(dǎo)數(shù)的應(yīng)用:
①求切線的斜率。
②導(dǎo)數(shù)與函數(shù)的單調(diào)性的關(guān)系
已知 (1)分析 的定義域;(2)求導(dǎo)數(shù) (3)解不等式 ,解集在定義域內(nèi)的部分為增區(qū)間(4)解不等式 ,解集在定義域內(nèi)的部分為減區(qū)間。
我們在應(yīng)用導(dǎo)數(shù)判斷函數(shù)的單調(diào)性時一定要搞清以下三個關(guān)系,才能準(zhǔn)確無誤地判斷函數(shù)的單調(diào)性。以下以增函數(shù)為例作簡單的分析,前提條件都是函數(shù) 在某個區(qū)間內(nèi)可導(dǎo)。
、矍髽O值、求最值。
注意:極值≠最值。函數(shù)f(x)在區(qū)間[a,b]上的最大值為極大值和f(a) 、f(b)中最大的一個。最小值為極小值和f(a) 、f(b)中最小的一個。
f/(x0)=0不能得到當(dāng)x=x0時,函數(shù)有極值。
但是,當(dāng)x=x0時,函數(shù)有極值 f/(x0)=0
判斷極值,還需結(jié)合函數(shù)的單調(diào)性說明。
4.導(dǎo)數(shù)的常規(guī)問題:
。1)刻畫函數(shù)(比初等方法精確細微);
(2)同幾何中切線聯(lián)系(導(dǎo)數(shù)方法可用于研究平面曲線的切線);
。3)應(yīng)用問題(初等方法往往技巧性要求較高,而導(dǎo)數(shù)方法顯得簡便)等關(guān)于 次多項式的導(dǎo)數(shù)問題屬于較難類型。
2.關(guān)于函數(shù)特征,最值問題較多,所以有必要專項討論,導(dǎo)數(shù)法求最值要比初等方法快捷簡便。
3.導(dǎo)數(shù)與解析幾何或函數(shù)圖象的混合問題是一種重要類型,也是高考中考察綜合能力的一個方向,應(yīng)引起注意。
【高二數(shù)學(xué)學(xué)習(xí)方法】相關(guān)文章:
高二數(shù)學(xué)的學(xué)習(xí)方法總結(jié)11-11
高二數(shù)學(xué)學(xué)習(xí)方法12-16
高二數(shù)學(xué)的學(xué)習(xí)方法匯總11-01
高二數(shù)學(xué)的學(xué)習(xí)方法指導(dǎo)11-26
高二數(shù)學(xué)學(xué)習(xí)方法11-07
高二數(shù)學(xué)學(xué)習(xí)方法總結(jié)09-24
經(jīng)典總結(jié):高二數(shù)學(xué)學(xué)習(xí)方法10-07
高二數(shù)學(xué)學(xué)習(xí)方法技巧10-14