小學數(shù)學學習中常用的邏輯思維方法
“培養(yǎng)學生初步的邏輯思維能力”是九年義務教育小學數(shù)學教學大綱規(guī)定的教學任務和教育目標。而指導 學生學習和掌握常用的邏輯思維方法,是培養(yǎng)和提高學生的邏輯思維能力,使學生樂于思考并善于思考的關鍵 。在小學數(shù)學教學中要啟發(fā)學生掌握如下一些常用的邏輯思維方法。
小學數(shù)學學習中常用的邏輯思維方法
1.分析與綜合的方法。
所謂分析的方法,就是把研究的對象分解成它的各個組成部分,然后分別研究每一 個組成部分,從而獲得對研究對象的本質認識的思維方法。綜合的方法是把認識對象的各個部分聯(lián)系起來加以 研究,從整體上認識它的本質。例如學生認識5, 教師要求學生把5個蘋果放在兩個盤子里,從而得到四種分法 :1和4;2和3;3和2;4和1。由此學生認識到5可以分成1和4,也可以分成2和3等。 這就是分析法。反過來, 教師又引導學生在分析的基礎上認識:1和4可以組成5,2和3也可以組成5。這就是綜合法。在此基礎上, 教師 還可以再一次運用分析、綜合方法,指導學生認識5還可以分成5個1,從而知道5里面有5個1;反過來,5個1能 組成5。分析、綜合法廣泛應用于整數(shù)的認識、分數(shù)、小數(shù)、四則混合運算、復合應用題、組合圖形的計算等教 學中。
2.比較與分類的方法。
比較是用以確定研究對象和現(xiàn)象的共同點和不同點的方法。有比較才有鑒別,它是 人們思維的基礎。分類是整理加工科學事實的基本方法。比較與分類貫穿于整個小學數(shù)學教學的全過程之中。 比如學生開始學習數(shù)學,他就會比較長短,比較大小,進而學會比較多少。然后就會把同樣大小的放在一起, 相同形狀的歸為一類。或者把相同屬性的數(shù)學歸并在一起(整數(shù)、小數(shù)、分數(shù))。前者反映的是比較方法,后 者例舉的是分類方法。分類常常是通過比較得到的。比較和分類方法是小學數(shù)學教學中經常用到的最基本的思 維方法。
3.抽象與概括的方法。
抽象就是從許多客觀事物中舍棄個別的、非本質的屬性,抽出共同的、本質的屬性 的思維方法,概括就是把同類事物的共同本質屬性綜合起來成為一個整體。例如,10以內加法題一共有45道, 學生初學時都是靠記住數(shù)的組成進行計算的。但是如果教師幫助學生逐步抽象概括出如下的規(guī)律,學生的計算 就靈活多了:①一個數(shù)加上1,其結果就是這個數(shù)的后繼數(shù)。②應用加法的交換性質。 ③一個數(shù)加上2,共13道 題,可運用規(guī)律①推得。④5+5=10。掌握了這些規(guī)律,學生就可以減輕記憶負擔,其認識水平也可以大大提 高。又如,在計算得數(shù)是11的加法時,學生通過擺小棒計算出2+9、3+8、7+4、6+5等幾道題之后,從中抽 象出“湊十法”:看大數(shù),拆小數(shù),先湊十,再加幾。這樣,在學習后面的所有20以內進位加法時就可以直接 運用“湊十法”進行計算了。事實表明,學生一旦掌握了抽象與概括的學習方法,機械記憶就將被意義理解所 代替,認知能力和思維能力就會產生新的飛躍。
4.歸納與演繹的方法。
這是經常運用的兩種推理方法。歸納推理是由個別的或特殊的知識類推到一般的規(guī) 律性知識。小學數(shù)學中的運算定律、性質及法則,很多是用歸納推理概括出來的。如加法的交換律是通過枚舉 整數(shù)中的幾個“兩個加數(shù)交換位置相加和不變”的例子推導概括出來的。這樣的推理在小學一年級就可以經常 開展訓練。如讓學生演算下面各題后發(fā)現(xiàn)一種規(guī)律:7-7=□,6-6=□,5-5=□……9-8=□,8-7=□ ……2-1=□。經常進行這樣的訓練,有利于培養(yǎng)學生有序、有理、有據(jù)的思維。
演繹推理是由一般推到特殊的思維方法。例如一年級學生“算加法想減法”,實際上是以加減互逆關系作 為大前提,從而推算出減法式題的計算結果。又如,由“0不能做除數(shù)”為大前提,根據(jù)分數(shù)、 比與除法的關 系,推理出分母和比的后項不能為0。事實上, 人們認識事物一般都經歷兩個過程:一個是由特殊到一般,一 個是由一般到特殊。因此,歸納與演繹法是人們認識事物的重要方法。
值得一提的是,由于歸納推理的判斷是一些個別的、特殊的判斷,因而它的結論與前提之間的聯(lián)系并不具 有邏輯的必然性。例如,雖然有0÷2=0,0÷3=0,0÷100=0,……但并不能因此推出“0除以任何數(shù)都等于 0”。所以,人們在得到一般規(guī)律性知識以后, 還要用某個規(guī)律性知識推到某個個別的特殊的知識。一般說來 ,如果一般規(guī)律性知識是真的,那么,所推得的個別或特殊的知識也是真的。
綜上所述,我們看到運用分析、綜合、比較、分類的方法研究事物,有助于人們認識事物的本質和事物發(fā) 展的規(guī)律。然而,人們要把握事物的本質和規(guī)律必須要經歷一個抽象概括的過程,而抽象概括的過程既要運 用分析、綜合、比較、歸納,也要運用概念、判斷和推理進行。在實際的學習和工作中,這些方法通常是在結 合使用、交替使用和綜合運用中發(fā)揮作用。因此,上述邏輯思維的方法是小學生學習數(shù)學經常用到的一般方法 ,也是在小學數(shù)學教學中必須讓學生學習和掌握的基本方法。我們要根據(jù)各年級的教學內容,認真研究哪些邏 輯思維方法對學習某個內容所起的作用,這樣才能在教學中有意識地培養(yǎng)學生初步的`邏輯思維能力。
小學數(shù)學最重要的10個思維方法
1、對應思想方法
對應是人們對兩個集合因素之間的聯(lián)系的一種思想方法,小學數(shù)學一般是一一對應的直觀圖表,并以此孕伏函數(shù)思想。
如直線上的點(數(shù)軸)與表示具體的數(shù)是一一對應。
2、假設思想方法
假設是先對題目中的已知條件或問題作出某種假設,然后按照題中的已知條件進行推算,根據(jù)數(shù)量出現(xiàn)的矛盾,加以適當調整,最后找到正確答案的一種思想方法。
假設思想是一種有意義的想象思維,掌握之后可以使要解決的問題更形象、具體,從而豐富解題思路。
3、比較思想方法
比較思想是數(shù)學中常見的思想方法之一,也是促進學生思維發(fā)展的手段。
在教學分數(shù)應用題中,教師要善于引導學生比較題中已知和未知數(shù)量變化前后的情況,可以幫助學生較快地找到解題途徑。
4、符號化思想方法
用符號化的語言(包括字母、數(shù)字、圖形和各種特定的符號)來描述數(shù)學內容,這就是符號思想。
如數(shù)學中各種數(shù)量關系,量的變化及量與量之間進行推導和演算,都是用小小的字母表示數(shù),以符號的濃縮形式表達大量的信息。
如定律、公式等。
5、類比思想方法
類比思想是指依據(jù)兩類數(shù)學對象的相似性,有可能將已知的一類數(shù)學對象的性質遷移到另一類數(shù)學對象上去的思想。
如加法交換律和乘法交換律、長方形的面積公式、平行四邊形面積公式和三角形面積公式。
類比思想不僅使數(shù)學知識容易理解,而且使公式的記憶變得順水推舟般自然和簡潔。
6、轉化思想方法
轉化思想是由一種形式變換成另一種形式的思想方法,而其本身的大小是不變的。
如幾何的等積變換、解方程的同解變換、公式的變形等,在計算中也常用到甲÷乙=甲×1/乙。
7、分類思想方法
分類思想方法不是數(shù)學獨有的方法,數(shù)學的分類思想方法體現(xiàn)對數(shù)學對象的分類及其分類的標準。
如自然數(shù)的分類,若按能否被2整除分奇數(shù)和偶數(shù);按約數(shù)的個數(shù)分質數(shù)和合數(shù)。又如三角形可以按邊分,也可以按角分。
不同的分類標準就會有不同的分類結果,從而產生新的概念。對數(shù)學對象的正確、合理分類取決于分類標準的正確、合理性,數(shù)學知識的分類有助于學生對知識的梳理和建構。
8、集合思想方法
集合思想就是運用集合的概念、邏輯語言、運算、圖形等來解決數(shù)學問題或非純數(shù)學問題的思想方法。小學采用直觀手段,利用圖形和實物滲透集合思想。在講述公約數(shù)和公倍數(shù)時采用了交集的思想方法。
9、數(shù)形結合思想方法
數(shù)和形是數(shù)學研究的兩個主要對象,數(shù)離不開形,形離不開數(shù),一方面抽象的數(shù)學概念,復雜的數(shù)量關系,借助圖形使之直觀化、形象化、簡單化。
另一方面復雜的形體可以用簡單的數(shù)量關系表示。在解應用題中常常借助線段圖的直觀幫助分析數(shù)量關系。
10、統(tǒng)計思想方法
小學數(shù)學中的統(tǒng)計圖表是一些基本的統(tǒng)計方法,求平均數(shù)應用題是體現(xiàn)出數(shù)據(jù)處理的思想方法。
【小學數(shù)學學習中的邏輯思維方法】相關文章:
小學數(shù)學教學中邏輯思維能力培養(yǎng)08-10
學習數(shù)學有利于邏輯思維10-13
小學數(shù)學的學習好方法10-30
小學數(shù)學的學習方法12-19
小學數(shù)學的學習方法08-09