- 相關(guān)推薦
小學(xué)數(shù)學(xué)六年級上冊《數(shù)與形》說課稿(通用10篇)
作為一名默默奉獻的教育工作者,時常需要用到說課稿,借助說課稿可以讓教學(xué)工作更科學(xué)化。快來參考說課稿是怎么寫的吧!以下是小編為大家整理的小學(xué)數(shù)學(xué)六年級上冊《數(shù)與形》說課稿,希望對大家有所幫助。
小學(xué)數(shù)學(xué)六年級上冊《數(shù)與形》說課稿 1
一、說教材
。ㄒ唬┙虒W(xué)內(nèi)容
本節(jié)課是人教版六年級上冊第八單元《數(shù)學(xué)廣角》的教學(xué)內(nèi)容,考慮到學(xué)生的實際接受能力,本課只講解例1
1、例題中巧妙運用數(shù)形結(jié)合思想解題,不僅直觀而且易于尋找解題途徑,并能避免繁雜的計算和推理,可以起到事半功倍的效果,在解決問題過程中顯得更優(yōu)越,因而數(shù)形結(jié)合思想是幫助學(xué)生建立數(shù)學(xué)模型的基礎(chǔ)。
2、例題中巧妙運用數(shù)形結(jié)合思想解題,不僅直觀易于尋找解題途徑,而且能避免繁雜的計算和推理,可以起到事半功倍的效果,在解決問題過程中更優(yōu)越,因而數(shù)形結(jié)合思想是幫助學(xué)生建立數(shù)學(xué)模型的基礎(chǔ)。
3、從教材編排看,數(shù)學(xué)知識的呈現(xiàn)逐漸由借助直觀形式過渡到知識的遷移與推理;從學(xué)生思維特點看,他們正從形象思維逐步過渡到抽象邏輯思維,從數(shù)形結(jié)合的滲透情況看,教材注重由低段的感悟數(shù)形結(jié)合思想逐步到高段能夠運用數(shù)形結(jié)合解決問題。
(二)學(xué)情
小學(xué)六年級的學(xué)生已具備初步的邏輯思維能力,但仍以形象思維為主,教材在小學(xué)中年級的數(shù)學(xué)教學(xué)中,已經(jīng)逐漸借助推理與知識遷
移來完成,并結(jié)合教材挖掘、創(chuàng)造條件開始滲透數(shù)形結(jié)合思想。進入高年級后,學(xué)生邏輯思維能力已有一定發(fā)展,為了使學(xué)生更直觀的理解知識,同時又滿足學(xué)生邏輯思維能力的發(fā)展,因此本節(jié)課教材在編排上體現(xiàn)了先“數(shù)”后“形”的順序,把形象真正放在“支撐”地位,從而為培養(yǎng)學(xué)生的邏輯能力而服務(wù)。
基于以上對教材和學(xué)情分析,我確定了本節(jié)課的`教學(xué)目標(biāo)及重難點如下。
。ㄈ┙虒W(xué)目標(biāo)
1、知識與技能:運用數(shù)形結(jié)合的方法探索規(guī)律,幫助計算,解決實際問題。
2、過程與方法:讓學(xué)生經(jīng)歷觀察、操作、歸納等活動,幫助學(xué)生借助“形”來直觀感受與“數(shù)”之間的關(guān)系,體會有時“形”與“數(shù)”能互相解釋,并能借助“形”解決一些與“數(shù)”有關(guān)的問題。
3、情感態(tài)度價值觀:培養(yǎng)學(xué)生通過數(shù)與形結(jié)合來分析思考問題,從而感悟數(shù)形結(jié)合的思想,提高解決問題的能力。
。ㄋ模.教學(xué)重點,難點:
教學(xué)重點:
借助“形”與“數(shù)”之間的關(guān)系,解決實際問題。
教學(xué)難點:
如何用形來表示數(shù),培養(yǎng)學(xué)生用“數(shù)形結(jié)合”的思想解決
問題。
二、說教法和學(xué)法。
。ㄒ唬┙谭ǎ
為了在教學(xué)過程中充分體現(xiàn)學(xué)生的主體地位和教師的主導(dǎo)作用,本節(jié)采用教師引導(dǎo)和學(xué)生自主學(xué)習(xí)相結(jié)合的方法,培養(yǎng)學(xué)生積極探索和團結(jié)協(xié)作的科學(xué)精神,同時采用課件生動形象的演示功能,強化理解,突出重點、突破難點并調(diào)動學(xué)生的學(xué)習(xí)積極性。
。ǘ⿲W(xué)法:
1、給學(xué)生提供充足的學(xué)具,引導(dǎo)學(xué)生產(chǎn)生自主應(yīng)用學(xué)具解決問題的意識,為學(xué)生提供了學(xué)具——小正方形,將問題直接呈現(xiàn)在學(xué)生面前,引導(dǎo)學(xué)生對題目的內(nèi)容進行理解,在明確了題目的要求之后,教師把時間還給學(xué)生,引導(dǎo)學(xué)生自主思考問題,通過具體形象學(xué)具的支撐幫助學(xué)生發(fā)現(xiàn)規(guī)律。
2、利用小組合作學(xué)習(xí),在合作交流中通過擺一擺,議一議,借助直觀教具發(fā)現(xiàn)理解規(guī)律。
3、利用小組合作學(xué)習(xí)交流的形式,鼓勵學(xué)生在面對問題或者疑惑時,僅依靠自己的力量無法進行解決,可小組同學(xué)互幫互助共同啟發(fā)直至發(fā)現(xiàn)規(guī)律解決問題。
三、說教學(xué)程序
。ㄒ唬﹦(chuàng)設(shè)情境,激情促思。
師:同學(xué)們,我們走過了小學(xué)五年的數(shù)學(xué)之旅,在學(xué)習(xí)中,我們常常會利用數(shù)形結(jié)合的思想,用畫圖的方法,來幫助我們解題。例如:在學(xué)習(xí)“倍”的問題時,我們利用線段圖來理解倍數(shù)關(guān)系、在解決植樹問題的時候,我們也通過作圖來區(qū)分植樹問題的3種情況。
。ǘ、合作探究、解決問題。
1、出示題目:1+3+5+7++99= 50個
這里有一道經(jīng)典的題目,你能很快說出結(jié)果嗎?我能。老師的秘密就是請小正方形來幫忙。你也想學(xué)會這種快速解題的方法嗎?
2、小組合作探究:1+3 1+3+5
師:好,我們首先來看看這類算式有什么特點?
1、這類算式有什么特點?(從1開始、連續(xù)奇數(shù)相加
2、復(fù)雜的問題,我們一般從簡單的例子入手研究。我們就以前兩個算式為研究對象,一起來探究其中的奧秘。
3、根據(jù)算式中的加數(shù)有序地拿出若干個小正方形,拼成大的正方形,你會怎么拼?
。1)1,用一個正方形表示。
(2)1+3= 1+3+5=怎樣用圖形來表示,并思考以下2個問題思考
。1)加數(shù)個數(shù)與圖形每邊個數(shù)有什么關(guān)系
。2)圖形總個數(shù)與加數(shù)個數(shù)有什么關(guān)系?
3、請觀察上面的算式和下面的圖形,結(jié)合這兩個問題你有什么發(fā)現(xiàn)?在小組內(nèi)說說
4、匯報發(fā)現(xiàn)。
發(fā)現(xiàn)一:加數(shù)的個數(shù)與對應(yīng)的大正方形中每邊個數(shù)相同;
發(fā)現(xiàn)二:加數(shù)有幾個和就是幾的平方。
5、根據(jù)你的發(fā)現(xiàn),能夠?qū)⑦@幾道算式補充完整。
1=()2
1+3=()2
1+3+5= ()2
并說說你的理由?如1+3這里有2個加數(shù)拼成了每邊個數(shù)是2的正方形,和就是2的平方
6、猜一猜:如果用小正方形繼續(xù)擺下去,至少還需要添上幾個小正方形才能拼成一個大的正方形呢?(7個)是這樣的嗎?求圖中小正方形的個數(shù),算式列為?
7、你能用一句話總結(jié)出求這類算式得數(shù)的規(guī)律嗎?這條規(guī)律我們是借助什么得到的呢?(圖形)的確,圖形能夠幫助更加直觀地理解數(shù)的問題。
。ㄈ、鞏固應(yīng)用,總結(jié)提升
1、運用規(guī)律解決問題。
。1)1+3+5+7=()2
。2)1+3+5+7+9+11+13=()2
。3)從1開始的連續(xù)n個奇數(shù)相加的和__。
2尋找圖形中蘊藏的算式的規(guī)律。通過剛才的研究,我們知道了,有很多數(shù)的問題是借助圖形來思考的,那么圖形里面會不會也蘊藏著數(shù)的規(guī)律呢?
下面幾個圖形中,各有幾個紅色的和藍色的小正方形?(填出來)先看紅色,有什么規(guī)律?每次加1;
再看藍色,有什么規(guī)律?每次加2。你是怎么知道每次加2的?(每增加1個紅色,就會增加兩個藍色,課件演示,)是這樣嗎?
照這樣下去,第6個圖形有多少個紅色小正方形和多少個藍色小正方形?你是怎么想的?
第10個圖形呢?有沒有更好的辦法?
。ㄕn件展示第二種)(鼓勵多角度思考)
那么第100個圖形中,有多少個藍色呢?算式怎么列?
[設(shè)計意圖]圖形中蘊藏著數(shù)的規(guī)律,數(shù)形結(jié)合能讓這些規(guī)律變得淺顯易懂第四環(huán)節(jié):知識梳理,歸納總結(jié)
同學(xué)們回憶一下,通過這節(jié)課的學(xué)習(xí)你有哪些收獲?
[設(shè)計意圖]對本節(jié)課的學(xué)習(xí)做一個回顧整理,形成基本的知識網(wǎng)絡(luò)。
小學(xué)數(shù)學(xué)六年級上冊《數(shù)與形》說課稿 2
設(shè)計說明
數(shù)與形之間密不可分,它們相互轉(zhuǎn)化,相輔相成。在課堂教學(xué)中適當(dāng)?shù)貞?yīng)用數(shù)形結(jié)合思想,把握好數(shù)形結(jié)合的度,就可以把問題化難為易,化繁為簡。在引進新知、建構(gòu)概念、解決問題時,還可以激發(fā)學(xué)生的學(xué)習(xí)興趣,有利于發(fā)展學(xué)生的想象力,提高學(xué)生的思維能力。
1.重視數(shù)與形之間的聯(lián)系,找到解題規(guī)律。
數(shù)形結(jié)合思想是小學(xué)階段最重要的一種數(shù)學(xué)思想,在課堂教學(xué)中,重視數(shù)與形之間的聯(lián)系,有助于學(xué)生抽象能力的提升。因此,教學(xué)伊始,從觀察、分析例1中圖與算式的關(guān)系入手,引導(dǎo)學(xué)生探究算式左邊的加數(shù)和與大正方形中每列(或每行)小正方形個數(shù)的關(guān)系,發(fā)現(xiàn)數(shù)與形之間的聯(lián)系,找到其中的規(guī)律,使學(xué)生在體驗用形表示數(shù)的直觀性的同時,學(xué)會應(yīng)用規(guī)律解決問題。
2.借助數(shù)與形之間的關(guān)系解決相關(guān)問題。
教學(xué)例2時,從觀察抽象的算式特點開始,先通過簡單的計算找到規(guī)律,再借助多種幾何圖形直觀驗證計算過程及結(jié)果,使學(xué)生在初步了解、運用數(shù)形結(jié)合思想方法的同時,體驗到數(shù)學(xué)的極限思想。
課前準(zhǔn)備
教師準(zhǔn)備:PPT課件 學(xué)情檢測卡
學(xué)生準(zhǔn)備:若干張完全相同的小正方形紙卡
教學(xué)過程
問題導(dǎo)入
1.課件出示問題。
小蘭和爸爸、媽媽一起步行到離家800 m遠的公園健身中心,用了20分鐘。媽媽到了健身中心后直接返回家里,還是用了20分鐘。小蘭和爸爸一起在健身中心鍛煉了10分鐘。然后,小蘭跑步回到家中,用了5分鐘,而爸爸走回家中,用了15分鐘。上面幾幅圖哪幅是描述媽媽離家時間和離家距離的關(guān)系?哪幅是描述爸爸的?哪幅是描述小蘭的?
2.學(xué)生討論、回答。
(圖2是描述媽媽的,因為媽媽在健身中心沒停留;圖1是描述小蘭的,因為她在回家的路上用了5分鐘;圖3是描述爸爸的)
3.揭示課題。
借助圖形不但能幫助我們直觀了解小蘭離家時間與離家距離的關(guān)系,還可以幫助我們解決復(fù)雜的代數(shù)問題,這節(jié)課我們就來研究數(shù)與形。
設(shè)計意圖:通過解決與圖形有關(guān)的數(shù)學(xué)問題,使學(xué)生關(guān)注圖形與數(shù)學(xué)的關(guān)系,在調(diào)動學(xué)生學(xué)習(xí)的積極性的同時,為新知的學(xué)習(xí)作鋪墊。
探究新知
1.教學(xué)例1。
(1)課件出示例題。
觀察圖形,把算式補充完整。
1=()2 1+3=()2 1+3+5=()2
(2)觀察圖形與算式,總結(jié)規(guī)律。
、儆^察、討論。
仔細觀察,看一看上面的圖形和算式左邊的加數(shù)有什么關(guān)系。
②匯報規(guī)律。
[規(guī)律一:算式左邊加數(shù)的個數(shù)與對應(yīng)的`大正方形中每列(或每行)小正方形的個數(shù)相同。
規(guī)律二:算式左邊加數(shù)的和是大正方形左下角的小正方形和其他“┐”形所包含的小正方形的個數(shù)和。
規(guī)律三:算式左邊加數(shù)的和正好等于大正方形中每列(或每行)小正方形個數(shù)的平方。]
(3)運用規(guī)律解決問題。(可借助學(xué)具擺一擺)
①1+3+5+7=()2 (1+3+5+7=42)
、1+3+5+7+9+11+13=()2
(1+3+5+7+9+11+13=72)
、踎_______________=92
(1+3+5+7+9+11+13+15+17=92)
2.教學(xué)例2。
(1)課件出示例題。
計算++++++…。
(2)觀察、試算、發(fā)現(xiàn)規(guī)律。
、儆^察算式中加數(shù)的特點,你有什么發(fā)現(xiàn)?
②分步算一算,你有什么發(fā)現(xiàn)?
試算:+=,+=,+=…
(發(fā)現(xiàn)繼續(xù)加下去,等號右邊的分數(shù)越來越接近1)
(3)數(shù)形結(jié)合,驗證規(guī)律。
、僖龑(dǎo)驗證:你發(fā)現(xiàn)的規(guī)律成立嗎?請結(jié)合圖示進行驗證。
、趨R報、交流。
a.結(jié)合圓的面積驗證:用一個圓的面積表示單位“1”,則原算式可表示為:
b.結(jié)合線段圖驗證:用一條線段表示單位“1”,則原算式可表示為:
(4)明確結(jié)論。
。1
(5)交流對用數(shù)形結(jié)合的方法解決問題的感悟。
(數(shù)形結(jié)合的方法可以把抽象的代數(shù)問題形象化,使其直觀、簡潔、易懂)
設(shè)計意圖:教學(xué)時,觀察、討論相結(jié)合,引導(dǎo)學(xué)生借助不同的幾何圖形解決例題中的代數(shù)問題,使學(xué)生在理解、掌握例題中數(shù)與形關(guān)系的基礎(chǔ)上,充分體會用數(shù)形結(jié)合方法解決問題的直觀性,感悟數(shù)學(xué)的極限思想。
鞏固練習(xí)
1.完成教材108頁1題。(讓學(xué)生獨立讀題、分析、解答,鼓勵用不同的方法解答)
2.完成教材108頁2題。
3.完成教材110頁4題。
課堂總結(jié)
通過本節(jié)課的學(xué)習(xí),你學(xué)會了哪些解決問題的方法?
布置作業(yè)
1.教材109頁1題。
2.教材110頁3題。
3.教材111頁6題。
小學(xué)數(shù)學(xué)六年級上冊《數(shù)與形》說課稿 3
。ㄒ唬┙虒W(xué)目標(biāo)
1、使學(xué)生通過自主研究發(fā)現(xiàn)圖形中隱藏著的書的規(guī)侓,并會應(yīng)用所發(fā)現(xiàn)的規(guī)侓。
2、使學(xué)生會利用圖型來解決一些有關(guān)的問題。
3、使學(xué)生在解決數(shù)學(xué)問題的過程中,體會和掌握數(shù)形結(jié)合`、歸納推理、極限等基本的數(shù)學(xué)思想。
(二)內(nèi)容安排及其特點
1、教學(xué)內(nèi)容和作用。
數(shù)形結(jié)合是一種非常重要的數(shù)學(xué)思想,把數(shù)與行結(jié)合起來解決問題可使復(fù)雜的問題變得更簡單,使抽象的問題變得更直觀。
數(shù)與形相結(jié)合的例子在小學(xué)教材中比比皆是。有的時候,是圖形中隱含著數(shù)的規(guī)侓,可利用數(shù)的規(guī)侓來解決圖形的問題。有時候,是利用圖形來直觀地解釋一些比較抽象的數(shù)學(xué)原理與事實,讓人一目了然。尤其是小學(xué)生思維的抽象程度還不夠高.經(jīng)常需要借助直觀模型來幫助理解。例如:利用長方形模型來教學(xué)乘法的算理,利用線段圖來幫助學(xué)生理解分數(shù)除法的算理,利用面積模型來解釋兩位乘兩位數(shù)的算理、乘法分配侓、完全平方公式等(如下圖)。
還有時候,數(shù)與形密不可分,可用“數(shù)”來解決“形”的問題,也可以用“形”來解決“數(shù)”的問題。例如:幾何及微積分中曲線與方程、方程組及函數(shù)與圖像互為工具互為解釋,有機融合。小學(xué)中的正比例關(guān)系和反比比例關(guān)系圖象也很好的反映了這樣的思想。
本單元中,教材以“1+3+5+7+……+(2n-1)=n2”“1/2 + 1/4 + 1/8 + 1/16 + 1/32 + 1/64 +……=1”為例,引導(dǎo)學(xué)生認識和利用數(shù)學(xué)與形的結(jié)合,可以解決一些有趣的數(shù)學(xué)問題。
具體編排結(jié)構(gòu)如下:
等差數(shù)列1,3,5,…之和與正方形數(shù)的關(guān)系 例1
數(shù)與形
求等比數(shù)列1/2,1/4,1/8,…之和例2
從上表可以看出,本單元的教學(xué)內(nèi)容分為兩個層次。
一是使學(xué)生通過數(shù)與形的對照,利用圖形直觀形象的特點表示出數(shù)的規(guī)律。例如,例1中,從圖形的角度直觀的理解“正方形數(shù)”和“平方數(shù)”的特點。
二是借助圖形解決一些比較抽象的、復(fù)雜的、不好解釋的問題。例如,例2中,解決1/2 + 1/4 + 1/8 + 1/16 + 1/32 + 1/64 +……的求和問題,教材利用分數(shù)意義的直觀模型,使學(xué)生直觀的理解“無限”的抽象概念;再如,練習(xí)二十二第6題,通過畫示意圖的方式可以比較便捷的解決比較抽象的問題。2、教材編排特點。
本單元教材在編排上有下面幾個特點。
、 突出探索規(guī)律、應(yīng)用規(guī)律的編排意圖。不管是數(shù)還是形,都突出對其規(guī)律的探索。例如,通過觀察和計算1、1+3、1+3+5、1+3+5+7+…既能發(fā)現(xiàn)加數(shù)的規(guī)律(從1開始的連續(xù)奇數(shù)的相加),又能發(fā)現(xiàn)和的規(guī)律(都是連續(xù)的正方形數(shù));通過觀察和計算1/2+1/4、1/2+1/4+1/8、1/2+1/4+1/8+1/16,…同樣,既能發(fā)現(xiàn)加數(shù)的規(guī)律,又能發(fā)現(xiàn)和的規(guī)律。在發(fā)現(xiàn)規(guī)律的基礎(chǔ)上,通過推理,再引導(dǎo)學(xué)生把規(guī)律應(yīng)用于一般的情形,解決問題。
、 在利用數(shù)形解決問題的過程中積累基本的活動經(jīng)驗,培養(yǎng)基本的數(shù)學(xué)思想。例如,在例2中,讓學(xué)生通過計算,發(fā)現(xiàn)和越來越趨向于1,感受什么叫“無限接近”。雖然無法一一窮舉所得的結(jié)果,但可以利用觀察到的規(guī)律進行“無窮無盡的”類推。使學(xué)生在這一過程中體會推理和極限的思想。
。ㄈ┙虒W(xué)建議
1、引導(dǎo)學(xué)生數(shù)形結(jié)合,相互印證。
形的問題中包含數(shù)的規(guī)律,數(shù)的問題也可以用形來幫助解決,教學(xué)時,要讓學(xué)生通過解決問題體會到數(shù)與形的這種完美結(jié)合。既可以從數(shù)的`角度出發(fā),讓學(xué)生看看可以怎樣用圖形來表示數(shù)的規(guī)律,也可以讓學(xué)生尋找圖形中所包含的數(shù)的規(guī)律。通過數(shù)與形的對應(yīng)關(guān)系,互相印證結(jié)果、感受數(shù)學(xué)的魅力。例如,在例1中可以先讓學(xué)生計算1+3+5+…的得數(shù),使學(xué)生發(fā)現(xiàn)得到的和都是“平方數(shù)”,再通過圖形的規(guī)律理解“平方數(shù)”和“正方形數(shù)”的含義。也就是說,如果用1個小正方形、3個小正方形、5個小正方形……可以共同拼出一些大小不一的大正方形圖。也可以有規(guī)律的呈現(xiàn)由小正方形拼成的大小不一的大正方形圖,讓學(xué)生看看前后兩個大正方形圖相差多少個小正方形,例如,邊長是2的大正方形和邊長是1大正方形,相差的是3個小正方形;邊長是3的大正方形和邊長是2大正方形,相差的是5個小正方形……相差的小正方形數(shù)正好是“?”形中的小正方形數(shù)。因此,每個大正方形圖中都隱藏著一個算式,即1+3+5+…+(2n-1)=n2。
2、使學(xué)生感受到用形來解決數(shù)的有關(guān)問題的直觀性與簡捷性。
圖形的直觀、形象的特點,決定了化數(shù)為形往往能夠達到以簡馭繁的目的。例如,例2中,用舉例的方法求出等比數(shù)列的有限和,都不能證明無限多項相加的結(jié)果為1。但是如果用圓和線段的圖形加以說明,學(xué)生則比較容易理解當(dāng)一個數(shù)無限趨近于1時,其結(jié)果就是1.一個極其抽象的極限問題,由于用圖形來解決,就變得十分直觀和便捷了。
3、引導(dǎo)學(xué)生從不同的角度探索數(shù)與形的通用模式。
小學(xué)階段,雖然不要求寫出一個數(shù)列的通式,但可以通過數(shù)形結(jié)合的方法,利用圖形的規(guī)律,從不同的角度,用自己的語言描述出數(shù)列的通用模式。例如,第109頁第1題,根據(jù)例1的結(jié)論,很容易得到第n個圖形中最外圍的小正方形數(shù)為:(2n+1)2-(2n-1)2,也可以從結(jié)果看到第一個圖最外圈有8個小正方形,第二個圖最外圈有8×2個小正方形,第三個圖最外圈有8*3個小正方形……通過推理,可知第n個圖最外圈就有8×n個小正方形,每一次都是在前一個圖的基礎(chǔ)上增加8個小正方形。還可以引導(dǎo)學(xué)生進一步思考:每次多的這8個小正方形都是怎么來的?使學(xué)生觀察到是由于每邊增加2個小正方形所產(chǎn)生的。
小學(xué)數(shù)學(xué)六年級上冊《數(shù)與形》說課稿 4
教學(xué)目標(biāo):
知識與技能
1、通過觀察、實驗,使學(xué)生認識圖形和相應(yīng)的數(shù)字之間的聯(lián)系。
2、啟發(fā)學(xué)生結(jié)合圖形的變化規(guī)律發(fā)現(xiàn)相應(yīng)的數(shù)字之間的聯(lián)系。
3、引導(dǎo)學(xué)生探索規(guī)律,發(fā)現(xiàn)規(guī)律,運用規(guī)律提高計算技能。
過程與方法
經(jīng)歷解決問題的相關(guān)過程,體驗遷移類推的學(xué)習(xí)方法。
情感態(tài)度與價值觀
感受數(shù)學(xué)在解決實際問題的作用,培養(yǎng)學(xué)生熱愛數(shù)學(xué)、樂學(xué)數(shù)學(xué)的情感,體驗數(shù)學(xué)知識的應(yīng)用價值。
重點:
引導(dǎo)學(xué)生理解圖形和數(shù)字的對應(yīng)關(guān)系,并結(jié)合圖形的變化規(guī)律,發(fā)現(xiàn)相應(yīng)的數(shù)字變化規(guī)律。
難點:
探索規(guī)律并驗證規(guī)律。
教學(xué)準(zhǔn)備:
課件,小正方形若干。
教學(xué)過程:
一、質(zhì)疑導(dǎo)入
出示算式:1+3+5+7+9+11+······+=(?)你能快速口報出結(jié)果嗎?觀察這道算式,這些加數(shù)都有什么特點?
二、探究新知
1、化繁為簡初步探究(1)1+3=()1+3+5=()1+3+5+7=()算出結(jié)果。觀察算式與結(jié)果,你有什么發(fā)現(xiàn)?
(1、它們都是從1開始的.連續(xù)奇數(shù)數(shù)列求和。
2、它們的和是一個數(shù)的平方。)
(2)像這樣的算式會有什么奧妙呢?今天我們就借助小小的正方形來研究像這樣的數(shù)列求和的奧妙(板書課題:數(shù)與形)
教師演示1可以表示1個正方形,1+3可以用1個正方形和3個正方形拼成一個稍大的正方形,是幾行幾列呢?(2)數(shù)形結(jié)合在拼好的稍大正方形、較大正方形上涂一涂,分別找出加數(shù)1、3、5在圖形上怎么表示?一個數(shù)涂一種顏色。
(3)觀察算式與圖形,你發(fā)現(xiàn)了什么規(guī)律?同桌交流學(xué)生匯報。
。ㄒ(guī)律:1、這樣的數(shù)列求和:有幾個加數(shù)就是幾的平方。
2、每多一個加數(shù),圖形上會增加一個“L”形。
3、和是一個數(shù)的平方,這個數(shù)是組成正方形行與列小正方形的個數(shù)。(正方形邊長))(4)利用規(guī)律完成練習(xí)1+3+5+7+9=1+3+5+7+9+11+13=()=9的平方11+9+7+5+3+1=3、深化規(guī)律,探究求和通式(1)引導(dǎo);
1+3=2的平方,結(jié)果中2的平方,這里的2與哪個加數(shù)更為緊密?(3+1)÷2=2(2)學(xué)生推出1+3+5=3的平方(5+1)÷2=34、獨立驗證求和通式1+3+5+7+9=1+3+5+7+9+11+13=三、深化練習(xí)1+3+5+7+9+11+······+=(?)
小學(xué)數(shù)學(xué)六年級上冊《數(shù)與形》說課稿 5
教材分析:
《數(shù)與形》是本冊教材第八單元《數(shù)學(xué)廣角》的內(nèi)容。它是教材新增的內(nèi)容,按照傳統(tǒng)的教學(xué),是供學(xué)有余力的學(xué)生學(xué)習(xí)的,而對普通學(xué)生來說要求偏高,F(xiàn)在教材作為例題編寫,其意圖是讓學(xué)生通過數(shù)與形的對照,探究發(fā)現(xiàn)圖形中隱藏的數(shù)的規(guī)律,進一步體會數(shù)與形之間的內(nèi)在聯(lián)系,感受用形來解決數(shù)的有關(guān)問題的直觀性與簡捷性。并能把數(shù)形結(jié)合的思想遷移到解決其他一些實際問題,幫助學(xué)生積累經(jīng)驗。
設(shè)計理念:
數(shù)形結(jié)合是一種非常重要的數(shù)學(xué)思想,把數(shù)與形結(jié)合起來解決問題,可使復(fù)雜的問題變得更簡單,使抽象的問題變得更直觀。教學(xué)中學(xué)生通過想一想、擺一擺、算一算、議一議,發(fā)現(xiàn)圖形中隱藏的數(shù)的規(guī)律,并且能用發(fā)現(xiàn)的規(guī)律來解決一些有關(guān)數(shù)的問題,在解決數(shù)學(xué)問題的過程中,體會和掌握數(shù)形結(jié)合、歸納推理的數(shù)學(xué)思想,培養(yǎng)學(xué)生分析問題、解決問題的意識和能力。在練習(xí)中,學(xué)生利用數(shù)形對照,觀察圖的變化規(guī)律,并探究數(shù)的變化規(guī)律,體驗數(shù)與形的對應(yīng)關(guān)系,互相印證結(jié)果,感受數(shù)學(xué)的魅力。
教學(xué)目標(biāo):
1、學(xué)生通過自主探究發(fā)現(xiàn)圖形中隱藏著數(shù)的規(guī)律,并會應(yīng)用所發(fā)現(xiàn)的規(guī)律。
2、學(xué)生利用圖形解決一些有關(guān)數(shù)的問題。
3、學(xué)生在解決數(shù)學(xué)問題的過程中,體會和掌握數(shù)形結(jié)合的數(shù)學(xué)思想。培養(yǎng)學(xué)生用“數(shù)形結(jié)合”的思想解決問題。
教學(xué)重難點:
借助“形”感受與“數(shù)”之間的關(guān)系,培養(yǎng)學(xué)生用“數(shù)形結(jié)合”的思想解決問題。
教具學(xué)具準(zhǔn)備:
課件、顏色不同的小正方形若干、彩色筆、學(xué)習(xí)記錄單等。
教學(xué)過程:
一、創(chuàng)設(shè)情境,引入新課
出示本地“十一”假期中接待游客總數(shù)量的統(tǒng)計圖,學(xué)生通過觀察統(tǒng)計圖來解決一些問題。并引入新課:數(shù)與形
【設(shè)計意圖:新課的導(dǎo)入,聯(lián)系生活,拉近學(xué)生距離。通過舊知,喚起學(xué)生對數(shù)與形的感知,初步建立數(shù)與形的思想!
二、發(fā)現(xiàn)問題,探究規(guī)律
1、探究例1,發(fā)現(xiàn)規(guī)律。
今天這節(jié)課,我們先來玩一個拼圖游戲吧!就是用這樣的小正方形來拼出更大的正方形,相信你一定會從中發(fā)現(xiàn)數(shù)與形的奧秘。
①學(xué)生在小組內(nèi)完成學(xué)習(xí)單中的想一想、拼一拼、算一算、議一議。
、趯W(xué)生以小組為單位把拼圖呈現(xiàn)在黑板上,并匯報。
結(jié)合圖形發(fā)現(xiàn)算式中的特點:從1開始,連續(xù)奇數(shù)相加,有幾個這樣的奇數(shù)和就是幾的平方。
2、驗證規(guī)律:結(jié)合圖形總結(jié)得出:從1開始連續(xù)奇數(shù)相加,有幾個這樣的奇數(shù)拼出的圖形就有幾行幾列,也就是幾的平方。
3、寫寫填填。
同學(xué)們,老師想考考你們,你們能用剛才發(fā)現(xiàn)的規(guī)律直接寫一寫嗎?1+3+5+7=()2
1+3+5+7+9+11+13=()2
=92請你根據(jù)例1的結(jié)論算一算。 1+3+5+7+5+3+1=()
1+3+5+7+9+11+13+11+9+7+5+3+1=()4、變式練習(xí)
接下來的題目有信心嗎?3+5+7=()
9+11+13+11+9+7+5+3+1=()
【設(shè)計意圖:讓學(xué)生通過想一想、拼一拼、算一算、議一議,親歷了從“形”到“數(shù)”的過程,能直觀的發(fā)現(xiàn)“形”與“數(shù)”的關(guān)系。結(jié)合圖形與算式發(fā)現(xiàn)計算規(guī)律,并且能應(yīng)用規(guī)律來解決一些計算問題。讓學(xué)生初次體驗“形”能直觀解釋“數(shù)”的.計算,從而體驗成功的樂趣。增加變式練習(xí)豐富課時內(nèi)容,變式練習(xí)1針對學(xué)生易忽略從1開始這一要素進行訓(xùn)練,變式練習(xí)2訓(xùn)練學(xué)生解決問題的策略】
三、發(fā)現(xiàn)規(guī)律,解決問題
同學(xué)們,圖形與數(shù)之間還有許多的奧秘等著我們?nèi)グl(fā)現(xiàn),大家有信心接受挑戰(zhàn)嗎?
1、完成P108“做一做”第2題。
2、練習(xí)二十二第2題。
【設(shè)計意圖:引導(dǎo)學(xué)生從多樣化的角度探索規(guī)律,并應(yīng)用規(guī)律解決一些有關(guān)數(shù)的問題,進一步體會和掌握數(shù)形結(jié)合、歸納推理的數(shù)學(xué)思想,培養(yǎng)學(xué)生分析問題、解決問題的意識和能力。】
四、歸納小結(jié),拓展延伸
1.介紹“正方形數(shù)”和“三角形數(shù)”
像1、3、6、10、15、21、28.....這些數(shù)都叫做三角形數(shù)。像這樣1、4、9、16...能拼出正方形的數(shù)都叫做正方形數(shù)。
2.通過今天的學(xué)習(xí)你有哪些收獲?
【設(shè)計意圖:適時地介紹一些小知識,激發(fā)學(xué)生對數(shù)形結(jié)合的研究興趣。通過回憶舊知,喚起相關(guān)活動記憶,溝通本節(jié)課與過去學(xué)習(xí)的內(nèi)在聯(lián)系。讓學(xué)生感受到數(shù)形結(jié)合的學(xué)習(xí)方法并不陌生,它將一直伴隨著我們的學(xué)習(xí)!
小學(xué)數(shù)學(xué)六年級上冊《數(shù)與形》說課稿 6
【教學(xué)目標(biāo)】
知識技能
1.重視“數(shù)”“形”之間的聯(lián)系,找到解題規(guī)律。
2.引導(dǎo)學(xué)生探究算式左邊的加數(shù)與大正方形左下角的小正方形和其他“┐”形圖形所包含的小正方形個數(shù)的關(guān)系,發(fā)現(xiàn)“數(shù)”“形”之間的聯(lián)系,找到其中的規(guī)律,使學(xué)生在體驗用形表示數(shù)的直觀性的同時,學(xué)會應(yīng)用規(guī)律解決問題。 過程與方法:
1.借助“數(shù)”“形”之間的關(guān)系,解決相關(guān)問題。
2.使學(xué)生在初步了解、運用“數(shù)形結(jié)合”思想方法的同時,體驗到數(shù)學(xué)的極限思想。
情感態(tài)度價值觀:
在鞏固練習(xí)時,充分利用教材習(xí)題,引導(dǎo)學(xué)生在解決問題時能舉一反三地運用所學(xué),使學(xué)生的解題能力得到培養(yǎng)。
【教學(xué)重難點】
重點:感受數(shù)與形可以互相轉(zhuǎn)化,樹立數(shù)與形相結(jié)合是數(shù)學(xué)解題思想方法。 難點:體驗到數(shù)學(xué)的極限思想。
【教具準(zhǔn)備】
教具:正方形塊 ,課件。
學(xué)具:完全相同的小正方形紙卡若干
【教學(xué)過程】
一、激趣導(dǎo)入
師:老師聽說咱們班的同學(xué)很愛聽故事,今天老師也帶來了一個,這個故事叫 《形幫數(shù)》想聽嗎?
生:想
師:(出示第一張形與數(shù)的課件,背景音樂響起)在數(shù)學(xué)王國里住著數(shù)和形兩個大家族,他們有時爭吵,但更多的是互相幫助(故事講完)同學(xué)們,你們知道形是怎么幫助數(shù)解決問題的嗎?這節(jié)課讓我們一起到人教版數(shù)學(xué)六年級上冊第八單元 數(shù)學(xué)廣角—數(shù)與形 中尋找它們解決問題的過程及方法。(板書課題)
二、探究新知
1.教學(xué)例1。
(1)出示例題。
2 2 1=(1)
1+3=(2) 1+3+7=(3) 2
(以故事的方式講解)讓我們再次回到故事中,形大步走到數(shù)的面前,挺著肚子 1 2
說:“考考你,你算算我有多大?”數(shù)上下打量了一下形:“哼!小菜一碟,你是正方形,邊長1厘米,面積等于邊長乘以邊長,就是1×1=(1) ;看到數(shù)能快速地說出來,形說:“別高興的太早,后面還有呢!”接著它把和它長得一樣大小的三個兄弟叫到它身邊,和它站在一起,一個挨著一個,整齊地排成兩排,(讓學(xué)生拿出正方形按照形說的擺出來)形說:“那你現(xiàn)在能算出我們有多大嗎?”數(shù)說:“你的面積是1,你的三個兄弟都是和你一樣大小的正方形,它們每個的面積也是1,三個的面積就是3,你們四兄弟的面積是1+3=4,4是2的平方!
師:同學(xué)們,數(shù)算出來的結(jié)果對嗎?你們也用其他的方法來算一算,幫數(shù)檢查一下,看看結(jié)果是否正確?動手做在草稿紙上,做好的'同學(xué)請舉手。(引導(dǎo)學(xué)生用求大正方形的面積的方法計算:它們排成兩排還是一個大正方形,不管是行還是列都由兩個小正方形組成,邊長也是兩個小正方形的邊長相加,所以大正方形的2 面積等于2×2=4=(2) 等學(xué)生完成之后,個別提問方法,讓學(xué)生知道有兩種方法來做。故事內(nèi)容:“待數(shù)算完之后,形又把和它們一樣大小的五個正方形叫到它們的身邊,一個緊挨一個排成一個大正方形,你們知道形是怎樣排列的嗎?請你試著排列出來。”請學(xué)生上來排列,其他學(xué)生小組合作,教師巡視,指導(dǎo)學(xué)生列算式。檢查結(jié)果,講解過程。
(2)小組合作:動手排列第四個,第五個圖形并寫出相應(yīng)的算式,總結(jié)發(fā)現(xiàn)。
、倥帕袌D形、觀察、討論。
仔細觀察,看一看上面的圖形和算式左邊有什么關(guān)系?
②匯報發(fā)現(xiàn)。
發(fā)現(xiàn)一:算式左邊的加數(shù)的個數(shù)與對應(yīng)的大正方形中每行(或每列)的小正方形的個數(shù)相同;
發(fā)現(xiàn)二:算式左邊的加數(shù)是大正方形左下角的小正方形和其他“┐”形圖形所包含的小正方形個數(shù)之和。
發(fā)現(xiàn)三:算式左邊的加數(shù)和正好等于大正方形中每行(或每列)的小正方形個數(shù)的平方。
[算式左邊的加數(shù)是大正方形左下角的小正方形和其他“┐”形圖形所包含的小正方形個數(shù)之和,正好是每行(或每列)小正方形個數(shù)的平方]
發(fā)現(xiàn)四:從1開始的連續(xù)奇數(shù)的和正好是這幾個奇數(shù)的個數(shù)的平方。
小學(xué)數(shù)學(xué)六年級上冊《數(shù)與形》說課稿 7
教學(xué)目標(biāo):
在回顧整理的過程中,加深對數(shù)形結(jié)合思想方法的認識,使學(xué)生充分感受數(shù)形結(jié)合在小學(xué)數(shù)學(xué)學(xué)習(xí)中的應(yīng)用。通過具體的觀察,發(fā)展數(shù)形觀念,培養(yǎng)數(shù)形結(jié)合思想,感受學(xué)習(xí)數(shù)學(xué)的樂趣。
教學(xué)重點:
通過一些數(shù)形結(jié)合的實例,使學(xué)生感受數(shù)形結(jié)合思想的優(yōu)越性。
教學(xué)難點:
嘗試運用數(shù)形結(jié)合解決問題。
教學(xué)過程:
一、談話導(dǎo)入
我們學(xué)校門口的兩側(cè)有兩個正方形的草坪,如果我們想在草坪的四周擺上花,你能幫忙算一算,一個草坪最少要擺多少盆花嗎?
課件出示:
師:你可以畫畫圖幫助你解決這個問題。
讓學(xué)生獨立做:
師:哪位同學(xué)們到前面來給大家說一說你是怎樣做的?
還有不同的做法嗎?其他的同學(xué)也是這樣做的嗎?
師:剛才同學(xué)們在解決這個問題的時候都是通過畫圖來解決問題的,這樣通過畫示意圖,來解決問題的方法,在數(shù)學(xué)上叫做數(shù)形結(jié)合,數(shù)形結(jié)合就是指數(shù)和形之間一一對應(yīng)的關(guān)系,數(shù)形結(jié)合是一種很重量的數(shù)學(xué)思想方法。
二、回顧整理
師:想一想,我們學(xué)習(xí)哪些知識的時候運用到了數(shù)形結(jié)合?
課前,老師已經(jīng)讓大家對這部分知識作了整理下面請把你整理的情況先在小組里交流一下,小組長對同學(xué)們整理的情況進行歸納整理并做好記錄,比一比看哪個小組合作的好,整理的全面。
三、匯報交流
師:誰愿意代表你們小組把你們交流的結(jié)果展示給大家看。學(xué)生匯報:
師:你認為這個小組匯報的怎么樣?
師小結(jié)并及時評價 師:除了在這幾個方面用到了數(shù)形結(jié)合的思想方法,還有哪些方面也用到了數(shù)形結(jié)合?
生匯報后師小結(jié)。
師:你覺得畫圖有什么好處嗎?
還有哪個小組要補充嗎?
師:通過同學(xué)們的回顧整理,我們發(fā)現(xiàn)在學(xué)習(xí)這么多知識的.時候都用了數(shù)形結(jié)合的方法。
師舉例并展示課件
小結(jié):
同學(xué)們請看,像數(shù)的認識,數(shù)的運算,解決問題正比例圖像,這都屬于數(shù)與代數(shù)領(lǐng)域的內(nèi)容,統(tǒng)計圖是屬于統(tǒng)計與可能性領(lǐng)域。確定位置屬于空間與圖形領(lǐng)域?磥,我們幾乎在學(xué)習(xí)每一部分知識的時候,都用到了數(shù)形結(jié)合的思想方法。(示我國的著名的數(shù)學(xué)家華羅庚先生的名言讓學(xué)生讀一讀。)
師:數(shù)形結(jié)合的方法確實是一種很好的數(shù)學(xué)思想方法,它能幫助我們把復(fù)雜的問題簡單化,把抽象的問題直觀的、形象化。
四、應(yīng)用與反思
下面的幾道題,你能用數(shù)形結(jié)合的方法來解決嗎?
師:楊晨旭同學(xué)準(zhǔn)備參加六一兒童節(jié)的時裝表演節(jié)目,你能給她幫幫忙嗎?
出示:
學(xué)生獨立做
匯報評價
師:你認為他的方法怎么樣?還有不同的方法嗎?
師小結(jié)。
出示第二題:
師:有困難的同學(xué)同位倆可以商量一下
學(xué)生獨立做,匯報展示。
師:這道題看著似乎很難,但是一畫線段圖,一切問題就迎刃而解,數(shù)形結(jié)合的方法又一次幫助了我們。
出示:1/2+1/4+1/8+1/16=
下面這道題,你能順利解決嗎?
師:你是怎樣做的?到前面展示給大家看。
還有同的方法嗎?
五、小結(jié):
師:通過這節(jié)課的學(xué)習(xí),你有什么收獲嗎?
現(xiàn)在讓我們再一次讀一讀華羅庚先生的這句話。希望同學(xué)們在今后的學(xué)習(xí)和生活中都能用數(shù)形結(jié)合的方法解決。
小學(xué)數(shù)學(xué)六年級上冊《數(shù)與形》說課稿 8
一、教材分析
《數(shù)與形》章節(jié)位于小學(xué)數(shù)學(xué)六年級上冊,是數(shù)學(xué)學(xué)習(xí)中的一個重要轉(zhuǎn)折點,它不僅連接了之前學(xué)習(xí)的數(shù)學(xué)知識,也為后續(xù)更復(fù)雜的數(shù)學(xué)學(xué)習(xí)打下基礎(chǔ)。本章節(jié)通過圖形的直觀展示,幫助學(xué)生理解數(shù)的概念、運算規(guī)律以及數(shù)量關(guān)系,旨在培養(yǎng)學(xué)生的邏輯思維能力和空間想象能力。
二、學(xué)情分析
六年級學(xué)生已經(jīng)具備了一定的數(shù)學(xué)基礎(chǔ),能夠進行簡單的計算和推理。然而,他們對于抽象數(shù)學(xué)概念的理解仍有一定困難,尤其是將數(shù)與形相結(jié)合的能力。因此,在教學(xué)中需要注重引導(dǎo),通過豐富多樣的圖形和實例,幫助學(xué)生建立起數(shù)與形之間的聯(lián)系,激發(fā)他們的學(xué)習(xí)興趣。
三、教學(xué)目標(biāo)
知識與技能:使學(xué)生理解并能運用數(shù)與形之間的對應(yīng)關(guān)系,掌握通過圖形輔助解決數(shù)學(xué)問題的方法。
過程與方法:通過觀察、操作、討論等活動,培養(yǎng)學(xué)生的觀察力、想象力和解決問題的能力。
情感態(tài)度價值觀:激發(fā)學(xué)生對數(shù)學(xué)的'興趣,培養(yǎng)數(shù)形結(jié)合的思維習(xí)慣,體驗數(shù)學(xué)與生活的聯(lián)系。
四、教學(xué)重難點
重點:理解數(shù)與形的對應(yīng)關(guān)系,運用圖形輔助理解數(shù)的概念和運算。
難點:靈活運用數(shù)形結(jié)合的思想解決實際問題。
五、教學(xué)方法
直觀演示法:利用多媒體展示圖形,直觀呈現(xiàn)數(shù)與形的對應(yīng)關(guān)系。
探究合作法:組織小組合作,通過動手操作、討論交流,探索數(shù)與形的規(guī)律。
情境教學(xué)法:創(chuàng)設(shè)生活情境,讓學(xué)生在解決實際問題中應(yīng)用數(shù)與形的知識。
六、教學(xué)過程
1、導(dǎo)入新課:
通過生活中的實例(如用圖形表示數(shù)量的變化)引入,激發(fā)學(xué)生興趣。
2、新知探究:
展示數(shù)與形的基本對應(yīng)關(guān)系,如用線段表示數(shù)的大小。
通過例題講解,引導(dǎo)學(xué)生發(fā)現(xiàn)數(shù)與形之間的規(guī)律。
3、實踐應(yīng)用:
設(shè)計一系列練習(xí)題,包括基礎(chǔ)題和拓展題,讓學(xué)生在實際操作中加深理解。
4、總結(jié)提升:
引導(dǎo)學(xué)生總結(jié)數(shù)與形的關(guān)系及其在數(shù)學(xué)中的應(yīng)用,強調(diào)數(shù)形結(jié)合的重要性。
5、作業(yè)布置:
布置與生活相關(guān)的作業(yè),鼓勵學(xué)生用數(shù)形結(jié)合的方法解決實際問題。
七、板書設(shè)計
簡潔明了地呈現(xiàn)數(shù)與形的主要對應(yīng)關(guān)系和例題,突出教學(xué)重點。
八、教學(xué)反思
課后,我將根據(jù)學(xué)生的反饋和作業(yè)情況,反思教學(xué)效果,特別是學(xué)生在數(shù)形結(jié)合思維上的提升情況,以便調(diào)整后續(xù)的教學(xué)策略,更好地促進學(xué)生數(shù)學(xué)素養(yǎng)的全面發(fā)展。
小學(xué)數(shù)學(xué)六年級上冊《數(shù)與形》說課稿 9
今天,我非常榮幸能夠站在這里,與大家分享我對于小學(xué)數(shù)學(xué)六年級上冊《數(shù)與形》這一章節(jié)的教學(xué)設(shè)計思路。我的說課將從教材分析、學(xué)情分析、教學(xué)目標(biāo)、教學(xué)重難點、教學(xué)方法、教學(xué)過程以及板書設(shè)計幾個方面展開。
一、教材分析
《數(shù)與形》是小學(xué)數(shù)學(xué)六年級上冊的一個重要章節(jié),它不僅是學(xué)生之前學(xué)習(xí)整數(shù)、分數(shù)、小數(shù)等數(shù)概念的深化,也是后續(xù)學(xué)習(xí)代數(shù)、幾何乃至更高層次數(shù)學(xué)知識的基礎(chǔ)。本章節(jié)通過探索數(shù)與形之間的內(nèi)在聯(lián)系,引導(dǎo)學(xué)生理解數(shù)的幾何意義,感受數(shù)學(xué)中的抽象與直觀相結(jié)合的美妙,培養(yǎng)學(xué)生的空間想象能力和邏輯思維能力。
二、學(xué)情分析
六年級的學(xué)生已經(jīng)具備了一定的數(shù)學(xué)基礎(chǔ),能夠進行基本的數(shù)學(xué)運算和問題解決。他們好奇心強,喜歡探索未知,但抽象思維能力尚在發(fā)展中,對于數(shù)與形之間復(fù)雜關(guān)系的理解可能存在一定的困難。因此,在教學(xué)中需要注重直觀演示和動手操作,幫助學(xué)生建立直觀感知,逐步過渡到抽象理解。
三、教學(xué)目標(biāo)
知識與技能:學(xué)生能夠理解并掌握數(shù)與形之間的基本關(guān)系,如用圖形表示數(shù)、用數(shù)描述圖形特征等;能夠運用所學(xué)知識解決簡單的數(shù)與形結(jié)合的實際問題。
過程與方法:通過觀察、操作、討論等數(shù)學(xué)活動,培養(yǎng)學(xué)生發(fā)現(xiàn)問題、提出問題、分析問題和解決問題的能力;發(fā)展學(xué)生的`空間觀念和邏輯推理能力。
情感態(tài)度與價值觀:激發(fā)學(xué)生對數(shù)學(xué)學(xué)習(xí)的興趣,感受數(shù)學(xué)與生活的緊密聯(lián)系;培養(yǎng)學(xué)生的合作意識和探索精神,體驗數(shù)學(xué)學(xué)習(xí)的樂趣。
四、教學(xué)重難點
教學(xué)重點:理解數(shù)與形之間的基本關(guān)系,掌握用圖形表示數(shù)和用數(shù)描述圖形特征的方法。
教學(xué)難點:如何引導(dǎo)學(xué)生從直觀感知過渡到抽象理解,靈活運用數(shù)與形的知識解決實際問題。
五、教學(xué)方法
直觀演示法:利用多媒體和實物教具,直觀展示數(shù)與形的關(guān)系,幫助學(xué)生建立直觀感知。
動手操作法:設(shè)計動手操作環(huán)節(jié),讓學(xué)生在實踐中體驗數(shù)與形的結(jié)合,加深理解。
討論交流法:組織學(xué)生分組討論,鼓勵學(xué)生發(fā)表見解,促進思維碰撞,共同解決問題。
歸納總結(jié)法:引導(dǎo)學(xué)生對所學(xué)知識進行歸納總結(jié),形成系統(tǒng)的知識體系。
六、教學(xué)過程
1、導(dǎo)入新課:
通過生活中的實例(如用圖形表示班級人數(shù)、用數(shù)描述圖形面積等),激發(fā)學(xué)生興趣,引出課題。
2、新知探究:
直觀展示:利用多媒體展示數(shù)與形的對應(yīng)關(guān)系,引導(dǎo)學(xué)生觀察、思考。
動手操作:設(shè)計活動,如用小棒搭建圖形并計數(shù),讓學(xué)生親身體驗數(shù)與形的結(jié)合。
3、討論交流:
組織學(xué)生分組討論,分享自己的發(fā)現(xiàn)和想法,教師適時引導(dǎo)。
4、鞏固練習(xí):
設(shè)計不同層次的練習(xí)題,包括基礎(chǔ)題、提高題和拓展題,滿足不同學(xué)生的需求。
5、總結(jié)提升:
引導(dǎo)學(xué)生回顧本節(jié)課所學(xué)內(nèi)容,總結(jié)數(shù)與形之間的關(guān)系及學(xué)習(xí)方法,鼓勵學(xué)生提出疑問和進一步探索的方向。
6、布置作業(yè):
布置與本節(jié)課內(nèi)容相關(guān)的作業(yè),鞏固所學(xué)知識,并適當(dāng)拓展。
小學(xué)數(shù)學(xué)六年級上冊《數(shù)與形》說課稿 10
今天,我非常榮幸能夠站在這里,與大家分享我對于小學(xué)數(shù)學(xué)六年級上冊《數(shù)與形》這一章節(jié)的教學(xué)設(shè)計思路。我的說課將從教材分析、學(xué)情分析、教學(xué)目標(biāo)、教學(xué)重難點、教學(xué)方法、教學(xué)過程以及板書設(shè)計幾個方面展開。
一、教材分析
《數(shù)與形》是小學(xué)數(shù)學(xué)六年級上冊的一個重要章節(jié),它不僅是學(xué)生之前學(xué)習(xí)整數(shù)、分數(shù)、小數(shù)等數(shù)概念的深化,也是后續(xù)學(xué)習(xí)代數(shù)、幾何乃至更高層次數(shù)學(xué)知識的基礎(chǔ)。本章節(jié)通過探索數(shù)與形之間的內(nèi)在聯(lián)系,引導(dǎo)學(xué)生理解數(shù)的幾何意義,感受數(shù)學(xué)中的抽象與直觀相結(jié)合的美妙,培養(yǎng)學(xué)生的空間想象能力和邏輯思維能力。
二、學(xué)情分析
六年級的學(xué)生已經(jīng)具備了一定的數(shù)學(xué)基礎(chǔ),能夠進行基本的數(shù)學(xué)運算和問題解決。他們好奇心強,喜歡探索未知,但抽象思維能力尚在發(fā)展中,對于數(shù)與形之間復(fù)雜關(guān)系的理解可能存在一定的困難。因此,在教學(xué)中需要注重直觀演示和動手操作,幫助學(xué)生建立直觀感知,逐步過渡到抽象理解。
三、教學(xué)目標(biāo)
知識與技能:學(xué)生能夠理解并掌握數(shù)與形之間的基本關(guān)系,如用圖形表示數(shù)、用數(shù)描述圖形特征等;能夠運用所學(xué)知識解決簡單的數(shù)與形結(jié)合的實際問題。
過程與方法:通過觀察、操作、討論等數(shù)學(xué)活動,培養(yǎng)學(xué)生發(fā)現(xiàn)問題、提出問題、分析問題和解決問題的能力;發(fā)展學(xué)生的空間觀念和邏輯推理能力。
情感態(tài)度與價值觀:激發(fā)學(xué)生對數(shù)學(xué)學(xué)習(xí)的興趣,感受數(shù)學(xué)與生活的.緊密聯(lián)系;培養(yǎng)學(xué)生的合作意識和探索精神,體驗數(shù)學(xué)學(xué)習(xí)的樂趣。
四、教學(xué)重難點
教學(xué)重點:理解數(shù)與形之間的基本關(guān)系,掌握用圖形表示數(shù)和用數(shù)描述圖形特征的方法。
教學(xué)難點:如何引導(dǎo)學(xué)生從直觀感知過渡到抽象理解,靈活運用數(shù)與形的知識解決實際問題。
五、教學(xué)方法
直觀演示法:利用多媒體和實物教具,直觀展示數(shù)與形的關(guān)系,幫助學(xué)生建立直觀感知。
動手操作法:設(shè)計動手操作環(huán)節(jié),讓學(xué)生在實踐中體驗數(shù)與形的結(jié)合,加深理解。
討論交流法:組織學(xué)生分組討論,鼓勵學(xué)生發(fā)表見解,促進思維碰撞,共同解決問題。
歸納總結(jié)法:引導(dǎo)學(xué)生對所學(xué)知識進行歸納總結(jié),形成系統(tǒng)的知識體系。
六、教學(xué)過程
1、導(dǎo)入新課:
通過生活中的實例(如用圖形表示班級人數(shù)、用數(shù)描述圖形面積等),激發(fā)學(xué)生興趣,引出課題。
2、新知探究:
直觀展示:利用多媒體展示數(shù)與形的對應(yīng)關(guān)系,引導(dǎo)學(xué)生觀察、思考。
動手操作:設(shè)計活動,如用小棒搭建圖形并計數(shù),讓學(xué)生親身體驗數(shù)與形的結(jié)合。
3、討論交流:
組織學(xué)生分組討論,分享自己的發(fā)現(xiàn)和想法,教師適時引導(dǎo)。
4、鞏固練習(xí):
設(shè)計不同層次的練習(xí)題,包括基礎(chǔ)題、提高題和拓展題,滿足不同學(xué)生的需求。
5、總結(jié)提升:
引導(dǎo)學(xué)生回顧本節(jié)課所學(xué)內(nèi)容,總結(jié)數(shù)與形之間的關(guān)系及學(xué)習(xí)方法,鼓勵學(xué)生提出疑問和進一步探索的方向。
6、布置作業(yè):
布置與本節(jié)課內(nèi)容相關(guān)的作業(yè),鞏固所學(xué)知識,并適當(dāng)拓展。
【小學(xué)數(shù)學(xué)六年級上冊《數(shù)與形》說課稿】相關(guān)文章:
小學(xué)數(shù)學(xué)數(shù)形結(jié)合教學(xué)思想論文04-27
小學(xué)數(shù)學(xué)《求平均數(shù)》說課稿12-12
小學(xué)數(shù)學(xué)《四邊形》說課稿07-23
小學(xué)數(shù)學(xué)五年級上冊《多邊形的面積》說課稿范文07-13
論文數(shù)形結(jié)合在小學(xué)低段數(shù)學(xué)的運用12-09
小學(xué)數(shù)學(xué)《用字母表示數(shù)》說課稿05-13
小學(xué)數(shù)學(xué)《求平均數(shù)》說課稿范文12-12