高中數(shù)學(xué)數(shù)列說課稿(5篇)
作為一位杰出的老師,總不可避免地需要編寫說課稿,說課稿有利于教學(xué)水平的提高,有助于教研活動的開展。優(yōu)秀的說課稿都具備一些什么特點呢?下面是小編幫大家整理的高中數(shù)學(xué)數(shù)列說課稿,歡迎大家分享。
高中數(shù)學(xué)數(shù)列說課稿1
一、地位作用
數(shù)列是高中數(shù)學(xué)重要的內(nèi)容之一,等比數(shù)列是在學(xué)習(xí)了等差數(shù)列后新的一種特殊數(shù)列,在生活中如儲蓄、分期付款等應(yīng)用較為廣泛,在整個高中數(shù)學(xué)內(nèi)容中數(shù)列與已學(xué)過的函數(shù)及后面的數(shù)列極限有密切聯(lián)系,它也是培養(yǎng)學(xué)生數(shù)學(xué)能力的良好題材,它可以培養(yǎng)學(xué)生的觀察、分析、歸納、猜想及綜合解決問題的能力。
基于此,設(shè)計本節(jié)的數(shù)學(xué)思路上:
利用類比的思想,聯(lián)系等差數(shù)列的概念及通項公式的學(xué)習(xí)方法,采取自學(xué)、引導(dǎo)、歸納、猜想、類比總結(jié)的教學(xué)思路,充分發(fā)揮學(xué)生主觀能動性,調(diào)動學(xué)生的主體地位,充分體現(xiàn)教為主導(dǎo)、學(xué)為主體、練為主線的教學(xué)思想。
二、教學(xué)目標(biāo)
知識目標(biāo):1)理解等比數(shù)列的概念
2)掌握等比數(shù)列的通項公式
3)并能用公式解決一些實際問題
能力目標(biāo):培養(yǎng)學(xué)生觀察能力及發(fā)現(xiàn)意識,培養(yǎng)學(xué)生運用類比思想、解決分析問題的能力。
三、教學(xué)重點
1)等比數(shù)列概念的理解與掌握 關(guān)鍵:是讓學(xué)生理解“等比”的特點
2)等比數(shù)列的通項公式的推導(dǎo)及應(yīng)用
四、教學(xué)難點
“等比”的理解及利用通項公式解決一些問題。
五、教學(xué)過程設(shè)計
(一)預(yù)習(xí)自學(xué)環(huán)節(jié)。(8分鐘)
首先讓學(xué)生重新閱讀課本105頁國際象棋發(fā)明者的故事,并出示預(yù)習(xí)提綱,要求學(xué)生閱讀課本P122至P123例1上面。
回答下列問題
1)課本中前3個實例有什么特點?能否舉出其它例子,并給出等比數(shù)列的定義。
2)觀察以下幾個數(shù)列,回答下面問題:
1, , , ,……
。1,-2,-4,-8……
1,2,-4,8……
-1,-1,-1,-1,……
1,0,1,0……
①有哪幾個是等比數(shù)列?若是公比是什么?
、诠萹為什么不能等于零?首項能為零嗎?
、酃萹=1時是什么數(shù)列?
④q>0時數(shù)列遞增嗎?q<0時遞減嗎?
3)怎樣推導(dǎo)等比數(shù)列通項公式?課本中采取了什么方法?還可以怎樣推導(dǎo)?
4)等比數(shù)列通項公式與函數(shù)關(guān)系怎樣?
(二)歸納主導(dǎo)與總結(jié)環(huán)節(jié)(15分鐘)
這一環(huán)節(jié)主要是通過學(xué)生回答為主體,教師引導(dǎo)總結(jié)為主線解決本節(jié)兩個重點內(nèi)容。
通過回答問題(1)(2)給出等比數(shù)列的定義并強調(diào)以下幾點:①定義關(guān)鍵字“第二項起”“常數(shù)”;
②引導(dǎo)學(xué)生用數(shù)學(xué)語言表達(dá)定義: =q(n≥2);③q=1時為非零常數(shù)數(shù)列,既是等差數(shù)列又是等比數(shù)列。引申:若數(shù)列公比為字母,分q=1和q≠1兩種情況;引入分類討論的思想。
④q>0時等比數(shù)列單調(diào)性不定,q<0為擺動數(shù)列,類比等差數(shù)列d>0為遞增數(shù)列,d<0為遞減數(shù)列。
通過回答問題(3)回憶等差數(shù)列的推導(dǎo)方法,比較兩個數(shù)列定義的不同,引導(dǎo)推出等比數(shù)列通項公式。
法一:歸納法,學(xué)會從特殊到一般的方法,并從次數(shù)中發(fā)現(xiàn)規(guī)律,培養(yǎng)觀察力。
法二:迭乘法,聯(lián)系等差數(shù)列“迭加法”,培養(yǎng)學(xué)生類比能力及新舊知識轉(zhuǎn)化能力。
高中數(shù)學(xué)數(shù)列說課稿2
一、教材分析
1.從在教材中的地位與作用來看
《等比數(shù)列的前n項和》是數(shù)列這一章中的一個重要內(nèi)容,它不僅在現(xiàn)實生活中有著廣泛的實際應(yīng)用,如儲蓄、分期付款的有關(guān)計算等等,而且公式推導(dǎo)過程中所滲透的類比、化歸、分類討論、整體變換和方程等思想方法,都是學(xué)生今后學(xué)習(xí)和工作中必備的數(shù)學(xué)素養(yǎng).
2.從學(xué)生認(rèn)知角度看
從學(xué)生的思維特點看,很容易把本節(jié)內(nèi)容與等差數(shù)列前n項和從公式的形成、特點等方面進行類比,這是積極因素,應(yīng)因勢利導(dǎo).不利因素是:本節(jié)公式的推導(dǎo)與等差數(shù)列前n項和公式的推導(dǎo)有著本質(zhì)的不同,這對學(xué)生的思維是一個突破,另外,對于q=1這一特殊情況,學(xué)生往往容易忽視,尤其是在后面使用的過程中容易出錯.
3.學(xué)情分析
教學(xué)對象是剛進入高中的學(xué)生,雖然具有一定的分析問題和解決問題的能力,邏輯思維能力也初步形成,但由于年齡的原因,思維盡管活躍、敏捷,卻缺乏冷靜、深刻,因此片面、不嚴(yán)謹(jǐn).
4.重點、難點
教學(xué)重點:公式的推導(dǎo)、公式的特點和公式的運用.
教學(xué)難點:公式的推導(dǎo)方法和公式的靈活運用.
公式推導(dǎo)所使用的“錯位相減法”是高中數(shù)學(xué)數(shù)列求和方法中最常用的方法之一,它蘊含了重要的數(shù)學(xué)思想,所以既是重點也是難點.
二、目標(biāo)分析
知識與技能目標(biāo):
理解并掌握等比數(shù)列前n項和公式的推導(dǎo)過程、公式的特點,在此基礎(chǔ)
上能初步應(yīng)用公式解決與之有關(guān)的問題.
過程與方法目標(biāo):
通過對公式推導(dǎo)方法的探索與發(fā)現(xiàn),向?qū)W生滲透特殊到一般、類比與轉(zhuǎn)
化、分類討論等數(shù)學(xué)思想,培養(yǎng)學(xué)生觀察、比較、抽象、概括等邏輯思維能力和逆向思維的能力.
情感與態(tài)度價值觀:
通過對公式推導(dǎo)方法的探索與發(fā)現(xiàn),優(yōu)化學(xué)生的思維品質(zhì),滲透事物之
間等價轉(zhuǎn)化和理論聯(lián)系實際的辯證唯物主義觀點.
三、過程分析
學(xué)生是認(rèn)知的主體,設(shè)計教學(xué)過程必須遵循學(xué)生的認(rèn)知規(guī)律,盡可能地讓學(xué)生去經(jīng)歷知識的形成與發(fā)展過程,結(jié)合本節(jié)課的特點,我設(shè)計了如下的教學(xué)過程:
1.創(chuàng)設(shè)情境,提出問題
在古印度,有個名叫西薩的人,發(fā)明了國際象棋,當(dāng)時的印度國王大為贊賞,對他說:我可以滿足你的任何要求.西薩說:請給我棋盤的64個方格上,第一格放1粒小麥,第二格放2粒,第三格放4粒,往后每一格都是前一格的兩倍,直至第64格.國王令宮廷數(shù)學(xué)家計算,結(jié)果出來后,國王大吃一驚.為什么呢?
設(shè)計意圖:設(shè)計這個情境目的是在引入課題的同時激發(fā)學(xué)生的興趣,調(diào)動學(xué)習(xí)的積極性.故事內(nèi)容緊扣本節(jié)課的主題與重點.
此時我問:同學(xué)們,你們知道西薩要的是多少粒小麥嗎?引導(dǎo)學(xué)生寫出麥粒總數(shù).帶著這樣的問題,學(xué)生會動手算了起來,他們想到用計算器依次算出各項的值,然后再求和.這時我對他們的這種思路給予肯定.
設(shè)計意圖:在實際教學(xué)中,由于受課堂時間限制,教師舍不得花時間讓學(xué)生去做所謂的“無用功”,急急忙忙地拋出“錯位相減法”,這樣做有悖學(xué)生的認(rèn)知規(guī)律:求和就想到相加,這是合乎邏輯順理成章的事,教師為什么不相加而馬上相減呢?在整個教學(xué)關(guān)鍵處學(xué)生難以轉(zhuǎn)過彎來,因而在教學(xué)中應(yīng)舍得花時間營造知識形成過程的氛圍,突破學(xué)生學(xué)習(xí)的障礙.同時,形成繁難的情境激起了學(xué)生的求知欲,迫使學(xué)生急于尋求解決問題的新方法,為后面的教學(xué)埋下伏筆.
2.師生互動,探究問題
在肯定他們的思路后,我接著問:1,2,22,…,263是什么數(shù)列?有何特征?應(yīng)歸結(jié)為什么數(shù)學(xué)問題呢?
探討1:,記為(1)式,注意觀察每一項的特征,有何聯(lián)系?(學(xué)生會發(fā)現(xiàn),后一項都是前一項的2倍)
探討2:如果我們把每一項都乘以2,就變成了它的后一項,(1)式兩邊同乘以2則有,記為(2)式.比較(1)(2)兩式,你有什么發(fā)現(xiàn)?
設(shè)計意圖:留出時間讓學(xué)生充分地比較,等比數(shù)列前n項和的公式推導(dǎo)關(guān)鍵是變“加”為“減”,在教師看來這是“天經(jīng)地義”的,但在學(xué)生看來卻是“不可思議”的,因此教學(xué)中應(yīng)著力在這兒做文章,從而抓住培養(yǎng)學(xué)生的辯證思維能力的良好契機.
經(jīng)過比較、研究,學(xué)生發(fā)現(xiàn):(1)、(2)兩式有許多相同的項,把兩式相減,相同的項就消去了,得到:.老師指出:這就是錯位相減法,并要求學(xué)生縱觀全過程,反思:為什么(1)式兩邊要同乘以2呢?
設(shè)計意圖:經(jīng)過繁難的計算之苦后,突然發(fā)現(xiàn)上述解法,不禁驚呼:真是太簡潔了!讓學(xué)生在探索過程中,充分感受到成功的情感體驗,從而增強學(xué)習(xí)數(shù)學(xué)的興趣和學(xué)好數(shù)學(xué)的信心.
3.類比聯(lián)想,解決問題
這時我再順勢引導(dǎo)學(xué)生將結(jié)論一般化,
這里,讓學(xué)生自主完成,并喊一名學(xué)生上黑板,然后對個別學(xué)生進行指導(dǎo).
設(shè)計意圖:在教師的指導(dǎo)下,讓學(xué)生從特殊到一般,從已知到未知,步步深入,讓學(xué)生自己探究公式,從而體驗到學(xué)習(xí)的愉快和成就感.
對不對?這里的q能不能等于1?等比數(shù)列中的公比能不能為
1q=1時是什么數(shù)列?此時sn=?(這里引導(dǎo)學(xué)生對q進行分類討論,得出公式,同時為后面的例題教學(xué)打下基礎(chǔ).)
再次追問:結(jié)合等比數(shù)列的通項公式an=a1qn-1,如何把sn用a1、an、q表示出來?(引導(dǎo)學(xué)生得出公式的另一形式)
設(shè)計意圖:通過反問精講,一方面使學(xué)生加深對知識的認(rèn)識,完善知識結(jié)構(gòu),另一方面使學(xué)生由簡單地模仿和接受,變?yōu)閷χR的主動認(rèn)識,從而進一步提高分析、類比和綜合的能力.這一環(huán)節(jié)非常重要,盡管時間有時比較少,甚至僅僅幾句話,然而卻有畫龍點睛之妙用.
4.討論交流,延伸拓展
高中數(shù)學(xué)數(shù)列說課稿3
一、教材分析
1、從在教材中的地位與作用來看
《等比數(shù)列的前n項和》是數(shù)列這一章中的一個重要內(nèi)容,它不僅在現(xiàn)實生活中有著廣泛的實際應(yīng)用,如儲蓄、分期付款的有關(guān)計算等等,而且公式推導(dǎo)過程中所滲透的類比、化歸、分類討論、整體變換和方程等思想方法,都是學(xué)生今后學(xué)習(xí)和工作中必備的數(shù)學(xué)素養(yǎng)。
2、從學(xué)生認(rèn)知角度看
從學(xué)生的思維特點看,很容易把本節(jié)內(nèi)容與等差數(shù)列前n項和從公式的形成、特點等方面進行類比,這是積極因素,應(yīng)因勢利導(dǎo)。不利因素是:本節(jié)公式的推導(dǎo)與等差數(shù)列前n項和公式的推導(dǎo)有著本質(zhì)的不同,這對學(xué)生的思維是一個突破,另外,對于q=1這一特殊情況,學(xué)生往往容易忽視,尤其是在后面使用的過程中容易出錯。
3、學(xué)情分析
教學(xué)對象是剛進入高中的學(xué)生,雖然具有一定的分析問題和解決問題的能力,邏輯思維能力也初步形成,但由于年齡的原因,思維盡管活躍、敏捷,卻缺乏冷靜、深刻,因此片面、不嚴(yán)謹(jǐn)。
4、重點、難點
教學(xué)重點:公式的推導(dǎo)、公式的特點和公式的運用。
教學(xué)難點:公式的推導(dǎo)方法和公式的靈活運用。
公式推導(dǎo)所使用的"錯位相減法"是高中數(shù)學(xué)數(shù)列求和方法中最常用的方法之一,它蘊含了重要的數(shù)學(xué)思想,所以既是重點也是難點。
二、目標(biāo)分析
知識與技能目標(biāo):
理解并掌握等比數(shù)列前n項和公式的推導(dǎo)過程、公式的特點,在此基礎(chǔ)上能初步應(yīng)用公式解決與之有關(guān)的問題。
過程與方法目標(biāo):
通過對公式推導(dǎo)方法的探索與發(fā)現(xiàn),向?qū)W生滲透特殊到一般、類比與轉(zhuǎn)
化、分類討論等數(shù)學(xué)思想,培養(yǎng)學(xué)生觀察、比較、抽象、概括等邏輯思維能力和逆向思維的能力。
情感與態(tài)度價值觀:
通過對公式推導(dǎo)方法的探索與發(fā)現(xiàn),優(yōu)化學(xué)生的思維品質(zhì),滲透事物之間等價轉(zhuǎn)化和理論聯(lián)系實際的辯證唯物主義觀點。
三、過程分析
學(xué)生是認(rèn)知的主體,設(shè)計教學(xué)過程必須遵循學(xué)生的認(rèn)知規(guī)律,盡可能地讓學(xué)生去經(jīng)歷知識的形成與發(fā)展過程,結(jié)合本節(jié)課的特點,我設(shè)計了如下的教學(xué)過程:
1、創(chuàng)設(shè)情境,提出問題
在古印度,有個名叫西薩的人,發(fā)明了國際象棋,當(dāng)時的印度國王大為贊賞,對他說:我可以滿足你的任何要求。西薩說:請給我棋盤的64個方格上,第一格放1粒小麥,第二格放2粒,第三格放4粒,往后每一格都是前一格的兩倍,直至第64格。國王令宮廷數(shù)學(xué)家計算,結(jié)果出來后,國王大吃一驚。為什么呢?
設(shè)計意圖:設(shè)計這個情境目的是在引入課題的同時激發(fā)學(xué)生的興趣,調(diào)動學(xué)習(xí)的積極性。故事內(nèi)容緊扣本節(jié)課的主題與重點。
此時我問:同學(xué)們,你們知道西薩要的是多少粒小麥嗎?引導(dǎo)學(xué)生寫出麥粒總數(shù)。帶著這樣的問題,學(xué)生會動手算了起來,他們想到用計算器依次算出各項的值,然后再求和。這時我對他們的這種思路給予肯定。
設(shè)計意圖:在實際教學(xué)中,由于受課堂時間限制,教師舍不得花時間讓學(xué)生去做所謂的"無用功",急急忙忙地拋出"錯位相減法",這樣做有悖學(xué)生的認(rèn)知規(guī)律:求和就想到相加,這是合乎邏輯順理成章的事,教師為什么不相加而馬上相減呢?在整個教學(xué)關(guān)鍵處學(xué)生難以轉(zhuǎn)過彎來,因而在教學(xué)中應(yīng)舍得花時間營造知識形成過程的氛圍,突破學(xué)生學(xué)習(xí)的障礙。同時,形成繁難的情境激起了學(xué)生的求知欲,迫使學(xué)生急于尋求解決問題的新方法,為后面的教學(xué)埋下伏筆、
2、師生互動,探究問題
在肯定他們的思路后,我接著問:1,2,22,.....,263是什么數(shù)列?有何特征?應(yīng)歸結(jié)為什么數(shù)學(xué)問題呢?
探討1:,記為(1)式,注意觀察每一項的特征,有何聯(lián)系?(學(xué)生會發(fā)現(xiàn),后一項都是前一項的2倍)
探討2:如果我們把每一項都乘以2,就變成了它的后一項,(1)式兩邊同乘以2則有,記為(2)式。比較(1)(2)兩式,你有什么發(fā)現(xiàn)?
設(shè)計意圖:留出時間讓學(xué)生充分地比較,等比數(shù)列前n項和的公式推導(dǎo)關(guān)鍵是變"加"為"減",在教師看來這是"天經(jīng)地義"的,但在學(xué)生看來卻是"不可思議"的,因此教學(xué)中應(yīng)著力在這兒做文章,從而抓住培養(yǎng)學(xué)生的辯證思維能力的良好契機。
經(jīng)過比較、研究,學(xué)生發(fā)現(xiàn):(1)、(2)兩式有許多相同的項,把兩式相減,相同的項就消去了,得到:。老師指出:這就是錯位相減法,并要求學(xué)生縱觀全過程,反思:為什么(1)式兩邊要同乘以2呢?
設(shè)計意圖:經(jīng)過繁難的計算之苦后,突然發(fā)現(xiàn)上述解法,不禁驚呼:真是太簡潔了!讓學(xué)生在探索過程中,充分感受到成功的情感體驗,從而增強學(xué)習(xí)數(shù)學(xué)的興趣和學(xué)好數(shù)學(xué)的信心。
3、類比聯(lián)想,解決問題
這時我再順勢引導(dǎo)學(xué)生將結(jié)論一般化,
這里,讓學(xué)生自主完成,并喊一名學(xué)生上黑板,然后對個別學(xué)生進行指導(dǎo)。
設(shè)計意圖:在教師的指導(dǎo)下,讓學(xué)生從特殊到一般,從已知到未知,步步深入,讓學(xué)生自己探究公式,從而體驗到學(xué)習(xí)的愉快和成就感。
對不對?這里的q能不能等于1?等比數(shù)列中的公比能不能為1?q=1時是什么數(shù)列?此時sn=?(這里引導(dǎo)學(xué)生對q進行分類討論,得出公式,同時為后面的例題教學(xué)打下基礎(chǔ)。)
再次追問:結(jié)合等比數(shù)列的通項公式an=a1qn—1,如何把sn用a1、an、q表示出來?(引導(dǎo)學(xué)生得出公式的另一形式)
設(shè)計意圖:通過反問精講,一方面使學(xué)生加深對知識的認(rèn)識,完善知識結(jié)構(gòu),另一方面使學(xué)生由簡單地模仿和接受,變?yōu)閷χR的主動認(rèn)識,從而進一步提高分析、類比和綜合的能力。這一環(huán)節(jié)非常重要,盡管時間有時比較少,甚至僅僅幾句話,然而卻有畫龍點睛之妙用。
4、討論交流,延伸拓展
在此基礎(chǔ)上,我提出:探究等比數(shù)列前n項和公式,還有其它方法嗎?我們知道,
那么我們能否利用這個關(guān)系而求出sn呢?根據(jù)等比數(shù)列的定義又有,能否聯(lián)想到等比定理從而求出sn呢?
設(shè)計意圖:以疑導(dǎo)思,激發(fā)學(xué)生的探索欲望,營造一個讓學(xué)生主動觀察、思考、討論的氛圍、以上兩種方法都可以化歸到,這其實就是關(guān)于的一個遞推式,遞推數(shù)列有非常重要的研究價值,是研究性學(xué)習(xí)和課外拓展的極佳資源,它源于課本,又高于課本,對學(xué)生的思維發(fā)展有促進作用、
5、變式訓(xùn)練,深化認(rèn)識
首先,學(xué)生獨立思考,自主解題,再請學(xué)生上臺來幻燈演示他們的解答,其它同學(xué)進行評價,然后師生共同進行總結(jié)。
設(shè)計意圖:采用變式教學(xué)設(shè)計題組,深化學(xué)生對公式的認(rèn)識和理解,通過直接套用公式、變式運用公式、研究公式特點這三個層次的問題解決,促進學(xué)生新的數(shù)學(xué)認(rèn)知結(jié)構(gòu)的形成。通過以上形式,讓全體學(xué)生都參與教學(xué),以此培養(yǎng)學(xué)生的參與意識和競爭意識。
6、例題講解,形成技能
設(shè)計意圖:解題時,以學(xué)生分析為主,教師適時給予點撥,該題有意培養(yǎng)學(xué)生對含有參數(shù)的問題進行分類討論的數(shù)學(xué)思想。
7、總結(jié)歸納,加深理解
以問題的形式出現(xiàn),引導(dǎo)學(xué)生回顧公式、推導(dǎo)方法,鼓勵學(xué)生積極回答,然后老師再從知識點及數(shù)學(xué)思想方法兩方面總結(jié)。
設(shè)計意圖:以此培養(yǎng)學(xué)生的口頭表達(dá)能力,歸納概括能力。
8、故事結(jié)束,首尾呼應(yīng)
最后我們回到故事中的問題,我們可以計算出國王獎賞的小麥約為1、84×1019粒,大約7000億噸,用這么多小麥能從地球到太陽鋪設(shè)一條寬10米、厚8米的大道,大約是全世界一年糧食產(chǎn)量的459倍,顯然國王兌現(xiàn)不了他的承諾。
設(shè)計意圖:把引入課題時的懸念給予釋疑,有助于學(xué)生克服疲倦、繼續(xù)積極思維。
9、課后作業(yè),分層練習(xí)
必做:P129練習(xí)1、2、3、4
選作:
。2)"遠(yuǎn)望巍巍塔七層,紅光點點倍加增,共燈三百八十一,請問尖頭幾盞燈?"這首中國古詩的答案是多少?
設(shè)計意圖:出選作題的目的是注意分層教學(xué)和因材施教,讓學(xué)有余力的學(xué)生有思考的空間。
四、教法分析
對公式的教學(xué),要使學(xué)生掌握與理解公式的來龍去脈,掌握公式的推導(dǎo)方法,理解公式的成立條件,充分體現(xiàn)公式之間的聯(lián)系。在教學(xué)中,我采用"問題――探究"的教學(xué)模式,把整個課堂分為呈現(xiàn)問題、探索規(guī)律、總結(jié)規(guī)律、應(yīng)用規(guī)律四個階段。
利用多媒體輔助教學(xué),直觀地反映了教學(xué)內(nèi)容,使學(xué)生思維活動得以充分展開,從而優(yōu)化了教學(xué)過程,大大提高了課堂教學(xué)效率。
五、評價分析
本節(jié)課通過三種推導(dǎo)方法的研究,使學(xué)生從不同的思維角度掌握了等比數(shù)列前n項和公式。錯位相減:變加為減,等價轉(zhuǎn)化;遞推思想:縱橫聯(lián)系,揭示本質(zhì);等比定理:回歸定義,自然樸實。學(xué)生從中深刻地領(lǐng)會到推導(dǎo)過程中所蘊含的數(shù)學(xué)思想,培養(yǎng)了學(xué)生思維的深刻性、敏銳性、廣闊性、批判性。同時通過精講一題,發(fā)散一串的變式教學(xué),使學(xué)生既鞏固了知識,又形成了技能。在此基礎(chǔ)上,通過民主和諧的課堂氛圍,培養(yǎng)了學(xué)生自主學(xué)習(xí)、合作交流的學(xué)習(xí)習(xí)慣,也培養(yǎng)了學(xué)生勇于探索、不斷創(chuàng)新的思維品質(zhì)。
高中數(shù)學(xué)數(shù)列說課稿4
本節(jié)課講述的是人教版高一數(shù)學(xué)(上)§3.2等差數(shù)列(第一課時)的內(nèi)容。
一、教材分析
1、教材的地位和作用:
數(shù)列是高中數(shù)學(xué)重要內(nèi)容之一,它不僅有著廣泛的實際應(yīng)用,而且起著承前啟后的作用。一方面,數(shù)列作為一種特殊的函數(shù)與函數(shù)思想密不可分;另一方面,學(xué)習(xí)數(shù)列也為進一步學(xué)習(xí)數(shù)列的極限等內(nèi)容做好準(zhǔn)備。而等差數(shù)列是在學(xué)生學(xué)習(xí)了數(shù)列的有關(guān)概念和給出數(shù)列的兩種方法——通項公式和遞推公式的基礎(chǔ)上,對數(shù)列的知識進一步深入和拓廣。同時等差數(shù)列也為今后學(xué)習(xí)等比數(shù)列提供了學(xué)習(xí)對比的依據(jù)。
2、教學(xué)目標(biāo)
根據(jù)教學(xué)大綱的要求和學(xué)生的實際水平,確定了本次課的教學(xué)目標(biāo)
a在知識上:理解并掌握等差數(shù)列的概念;了解等差數(shù)列的通項公式的推導(dǎo)過程及思想;初步引入“數(shù)學(xué)建!钡乃枷敕椒ú⒛苓\用。
b在能力上:培養(yǎng)學(xué)生觀察、分析、歸納、推理的能力;在領(lǐng)會函數(shù)與數(shù)列關(guān)系的前提下,把研究函數(shù)的方法遷移來研究數(shù)列,培養(yǎng)學(xué)生的知識、方法遷移能力;通過階梯性練習(xí),提高學(xué)生分析問題和解決問題的能力。
c在情感上:通過對等差數(shù)列的研究,培養(yǎng)學(xué)生主動探索、勇于發(fā)現(xiàn)的求知精神;養(yǎng)成細(xì)心觀察、認(rèn)真分析、善于總結(jié)的良好思維習(xí)慣。
3、教學(xué)重點和難點
根據(jù)教學(xué)大綱的要求我確定本節(jié)課的教學(xué)重點為:
、俚炔顢(shù)列的概念。
②等差數(shù)列的通項公式的推導(dǎo)過程及應(yīng)用。
由于學(xué)生第一次接觸不完全歸納法,對此并不熟悉因此用不完全歸納法推導(dǎo)等差數(shù)列的同項公式是這節(jié)課的一個難點。同時,學(xué)生對“數(shù)學(xué)建模”的思想方法較為陌生,因此用數(shù)學(xué)思想解決實際問題是本節(jié)課的另一個難點。
二、學(xué)情教法分析:
對于三中的高一學(xué)生,知識經(jīng)驗已較為豐富,他們的智力發(fā)展已到了形式運演階段,具備了教強的抽象思維能力和演繹推理能力,所以我在授課時注重引導(dǎo)、啟發(fā)、研究和探討以符合這類學(xué)生的心理發(fā)展特點,從而促進思維能力的進一步發(fā)展。
針對高中生這一思維特點和心理特征,本節(jié)課我采用啟發(fā)式、討論式以及講練結(jié)合的教學(xué)方法,通過問題激發(fā)學(xué)生求知欲,使學(xué)生主動參與數(shù)學(xué)實踐活動,以獨立思考和相互交流的形式,在教師的指導(dǎo)下發(fā)現(xiàn)、分析和解決問題。
三、學(xué)法指導(dǎo):
在引導(dǎo)分析時,留出學(xué)生的思考空間,讓學(xué)生去聯(lián)想、探索,同時鼓勵學(xué)生大膽質(zhì)疑,圍繞中心各抒己見,把思路方法和需要解決的問題弄清。
四、教學(xué)程序
本節(jié)課的教學(xué)過程由(一)復(fù)習(xí)引入(二)新課探究(三)應(yīng)用舉例(四)反饋練習(xí)(五)歸納小結(jié)(六)布置作業(yè),六個教學(xué)環(huán)節(jié)構(gòu)成。
(一)復(fù)習(xí)引入:
1.從函數(shù)觀點看,數(shù)列可看作是定義域為__________對應(yīng)的一列函數(shù)值,從而數(shù)列的通項公式也就是相應(yīng)函數(shù)的______。(N﹡;解析式)
通過練習(xí)1復(fù)習(xí)上節(jié)內(nèi)容,為本節(jié)課用函數(shù)思想研究數(shù)列問題作準(zhǔn)備。
2.小明目前會100個單詞,他她打算從今天起不再背單詞了,結(jié)果不知不覺地每天忘掉2個單詞,那么在今后的五天內(nèi)他的單詞量逐日依次遞減為:100,98,96,94,92 ①
3. 小芳只會5個單詞,他決定從今天起每天背記10個單詞,那么在今后的五天內(nèi)他的單詞量逐日依次遞增為5,10,15,20,25 ②
通過練習(xí)2和3引出兩個具體的等差數(shù)列,初步認(rèn)識等差數(shù)列的`特征,為后面的概念學(xué)習(xí)建立基礎(chǔ),為學(xué)習(xí)新知識創(chuàng)設(shè)問題情境,激發(fā)學(xué)生的求知欲。由學(xué)生觀察兩個數(shù)列特點,引出等差數(shù)列的概念,對問題的總結(jié)又培養(yǎng)學(xué)生由具體到抽象、由特殊到一般的認(rèn)知能力。
(二) 新課探究
1、由引入自然的給出等差數(shù)列的概念:
如果一個數(shù)列,從第二項開始它的每一項與前一項之差都等于同一常數(shù),這個數(shù)列就叫等差數(shù)列,
這個常數(shù)叫做等差數(shù)列的公差,通常用字母d來表示。強調(diào):
① “從第二項起”滿足條件;
、诠頳一定是由后項減前項所得;
、勖恳豁椗c它的前一項的差必須是同一個常數(shù)(強調(diào)“同一個常數(shù)” );
在理解概念的基礎(chǔ)上,由學(xué)生將等差數(shù)列的文字語言轉(zhuǎn)化為數(shù)學(xué)語言,歸納出數(shù)學(xué)表達(dá)式:
an+1-an=d (n≥1)同時為了配合概念的理解,我找了5組數(shù)列,由學(xué)生判斷是否為等差數(shù)列,是等差數(shù)列的找出公差。
1. 9 ,8,7,6,5,4,……;√ d=-1
2. 0.70,0.71,0.72,0.73,0.74……;√ d=0.01
3. 0,0,0,0,0,0,…….; √ d=0
4. 1,2,3,2,3,4,……;×
5. 1,0,1,0,1,……×
其中第一個數(shù)列公差<0,>0,第三個數(shù)列公差=0
由此強調(diào):公差可以是正數(shù)、負(fù)數(shù),也可以是0
2、第二個重點部分為等差數(shù)列的通項公式
在歸納等差數(shù)列通項公式中,我采用討論式的教學(xué)方法。給出等差數(shù)列的首項,公差d,由學(xué)生研究分組討論a4的通項公式。通過總結(jié)a4的通項公式由學(xué)生猜想a40的通項公式,進而歸納an的通項公式。整個過程由學(xué)生完成,通過互相討論的方式既培養(yǎng)了學(xué)生的協(xié)作意識又化解了教學(xué)難點。
若一等差數(shù)列{an }的首項是a1,公差是d,則據(jù)其定義可得:
a2 - a1 =d 即: a2 =a1 +d
a3 – a2 =d 即: a3 =a2 +d = a1 +2d
a4 – a3 =d 即: a4 =a3 +d = a1 +3d
……
猜想: a40 = a1 +39d,進而歸納出等差數(shù)列的通項公式:
an=a1+(n-1)d
此時指出:這種求通項公式的辦法叫不完全歸納法,這種導(dǎo)出公式的方法不夠嚴(yán)密,為了培養(yǎng)學(xué)生嚴(yán)謹(jǐn)?shù)膶W(xué)習(xí)態(tài)度,在這里向?qū)W生介紹另外一種求數(shù)列通項公式的辦法------迭加法:
a2 – a1 =d
a3 – a2 =d
a4 – a3 =d
……
an – an-1=d
將這(n-1)個等式左右兩邊分別相加,就可以得到 an– a1= (n-1) d即 an= a1+(n-1) d (1)
當(dāng)n=1時,(1)也成立,
所以對一切n∈N﹡,上面的公式都成立
因此它就是等差數(shù)列{an}的通項公式。
在迭加法的證明過程中,我采用啟發(fā)式教學(xué)方法。
利用等差數(shù)列概念啟發(fā)學(xué)生寫出n-1個等式。
對照已歸納出的通項公式啟發(fā)學(xué)生想出將n-1個等式相加。證出通項公式。
在這里通過該知識點引入迭加法這一數(shù)學(xué)思想,逐步達(dá)到“注重方法,凸現(xiàn)思想” 的教學(xué)要求
接著舉例說明:若一個等差數(shù)列{an}的首項是1,公差是2,得出這個數(shù)列的通項公式是:an=1+(n-1)×2 ,
即an=2n-1 以此來鞏固等差數(shù)列通項公式運用
同時要求畫出該數(shù)列圖象,由此說明等差數(shù)列是關(guān)于正整數(shù)n一次函數(shù),其圖像是均勻排開的無窮多個孤立點。用函數(shù)的思想來研究數(shù)列,使數(shù)列的性質(zhì)顯現(xiàn)得更加清楚。
。ㄈ⿷(yīng)用舉例
這一環(huán)節(jié)是使學(xué)生通過例題和練習(xí),增強對通項公式含義的理解以及對通項公式的運用,提高解決實際問題的能力。通過例1和例2向?qū)W生表明:要用運動變化的觀點看等差數(shù)列通項公式中的a1、d、n、an這4個量之間的關(guān)系。當(dāng)其中的部分量已知時,可根據(jù)該公式求出另一部分量。
例1 (1)求等差數(shù)列8,5,2,…的第20項;第30項;第40項
。2)-401是不是等差數(shù)列-5,-9,-13,…的項?如果是,是第幾項?
在第一問中我添加了計算第30項和第40項以加強鞏固等差數(shù)列通項公式;第二問實際上是求正整數(shù)解的問題,而關(guān)鍵是求出數(shù)列的通項公式an.
例2 在等差數(shù)列{an}中,已知a5=10,a12 =31,求首項a1與公差d。
在前面例1的基礎(chǔ)上將例2當(dāng)作練習(xí)作為對通項公式的鞏固
例3 是一個實際建模問題
建造房屋時要設(shè)計樓梯,已知某大樓第2層的樓底離地面的高度為3米,第三層離地面5.8米,若樓梯設(shè)計為等高的16級臺階,問每級臺階高為多少米?
這道題我采用啟發(fā)式和討論式相結(jié)合的教學(xué)方法。啟發(fā)學(xué)生注意每級臺階“等高”使學(xué)生想到每級臺階離地面的高度構(gòu)成等差數(shù)列,引導(dǎo)學(xué)生將該實際問題轉(zhuǎn)化為數(shù)學(xué)模型------等差數(shù)列:(學(xué)生討論分析,分別演板,教師評析問題。問題可能出現(xiàn)在:項數(shù)學(xué)生認(rèn)為是16項,應(yīng)明確a1為第2層的樓底離地面的高度,a2表示第一級臺階離地面的高度而第16級臺階離地面高度為a17,可用課件展示實際樓梯圖以化解難點)。
設(shè)置此題的目的:1.加強同學(xué)們對應(yīng)用題的綜合分析能力,2.通過數(shù)學(xué)實際問題引出等差數(shù)列問題,激發(fā)了學(xué)生的興趣;3.再者通過數(shù)學(xué)實例展示了“從實際問題出發(fā)經(jīng)抽象概括建立數(shù)學(xué)模型,最后還原說明實際問題的“數(shù)學(xué)建模”的數(shù)學(xué)思想方法
(四)反饋練習(xí)
1、小節(jié)后的練習(xí)中的第1題和第2題(要求學(xué)生在規(guī)定時間內(nèi)完成)。目的:使學(xué)生熟悉通項公式,對學(xué)生進行基本技能訓(xùn)練。
2、書上例3)梯子的一級寬33cm,最低一級寬110cm,中間還有10級,各級的寬度成等差數(shù)列。計算中間各級的寬度。
目的:對學(xué)生加強建模思想訓(xùn)練。
3、若數(shù)例{an} 是等差數(shù)列,若 bn = k an ,(k為常數(shù))試證明:數(shù)列{bn}是等差數(shù)列
此題是對學(xué)生進行數(shù)列問題提高訓(xùn)練,學(xué)習(xí)如何用定義證明數(shù)列問題同時強化了等差數(shù)列的概念。
(五)歸納小結(jié)(由學(xué)生總結(jié)這節(jié)課的收獲)
1.等差數(shù)列的概念及數(shù)學(xué)表達(dá)式.
強調(diào)關(guān)鍵字:從第二項開始它的每一項與前一項之差都等于同一常數(shù)
2.等差數(shù)列的通項公式 an= a1+(n-1) d會知三求一
3.用“數(shù)學(xué)建模”思想方法解決實際問題
(六)布置作業(yè)
必做題:課本P114 習(xí)題3.2第2,6 題
選做題:已知等差數(shù)列{an}的首項a1=-24,從第10項開始為正數(shù),求公差d的取值范圍。
(目的:通過分層作業(yè),提高同學(xué)們的求知欲和滿足不同層次的學(xué)生需求)
五、板書設(shè)計
在板書中突出本節(jié)重點,將強調(diào)的地方如定義中,“從第二項起”及“同一常數(shù)”等幾個字用紅色粉筆標(biāo)注,同時給學(xué)生留有作題的地方,整個板書充分體現(xiàn)了精講多練的教學(xué)方法。
高中數(shù)學(xué)數(shù)列說課稿5
以下是高中數(shù)學(xué)《等差數(shù)列前n項和的公式》說課稿,僅供參考。
教學(xué)目標(biāo)
A、知識目標(biāo):
掌握等差數(shù)列前n項和公式的推導(dǎo)方法;掌握公式的運用。
B、能力目標(biāo):
(1)通過公式的探索、發(fā)現(xiàn),在知識發(fā)生、發(fā)展以及形成過程中培養(yǎng)學(xué)生觀察、聯(lián)想、歸納、分析、綜合和邏輯推理的能力。
(2)利用以退求進的思維策略,遵循從特殊到一般的認(rèn)知規(guī)律,讓學(xué)生在實踐中通過觀察、嘗試、分析、類比的方法導(dǎo)出等差數(shù)列的求和公式,培養(yǎng)學(xué)生類比思維能力。
(3)通過對公式從不同角度、不同側(cè)面的剖析,培養(yǎng)學(xué)生思維的靈活性,提高學(xué)生分析問題和解決問題的能力。
C、情感目標(biāo):(數(shù)學(xué)文化價值)
(1)公式的發(fā)現(xiàn)反映了普遍性寓于特殊性之中,從而使學(xué)生受到辯證唯物主義思想的熏陶。
(2)通過公式的運用,樹立學(xué)生"大眾教學(xué)"的思想意識。
(3)通過生動具體的現(xiàn)實問題,令人著迷的數(shù)學(xué)史,激發(fā)學(xué)生探究的興趣和欲望,樹立學(xué)生求真的勇氣和自信心,增強學(xué)生學(xué)好數(shù)學(xué)的心理體驗,產(chǎn)生熱愛數(shù)學(xué)的情感。
教學(xué)重點:等差數(shù)列前n項和的公式。
教學(xué)難點:等差數(shù)列前n項和的公式的靈活運用。
教學(xué)方法:啟發(fā)、討論、引導(dǎo)式。
教具:現(xiàn)代教育多媒體技術(shù)。
教學(xué)過程
一、創(chuàng)設(shè)情景,導(dǎo)入新課。
師:上幾節(jié),我們已經(jīng)掌握了等差數(shù)列的概念、通項公式及其有關(guān)性質(zhì),今天要進一步研究等差數(shù)列的前n項和公式。提起數(shù)列求和,我們自然會想到德國偉大的數(shù)學(xué)家高斯"神速求和"的故事,小高斯上小學(xué)四年級時,一次教師布置了一道數(shù)學(xué)習(xí)題:"把從1到100的自然數(shù)加起來,和是多少?"年僅10歲的小高斯略一思索就得到答案5050,這使教師非常吃驚,那么高斯是采用了什么方法來巧妙地計算出來的呢?如果大家也懂得那樣巧妙計算,那你們就是二十世紀(jì)末的新高斯。(教師觀察學(xué)生的表情反映,然后將此問題縮小十倍)。我們來看這樣一道一例題。
例1,計算:1+2+3+4+5+6+7+8+9+10.
這道題除了累加計算以外,還有沒有其他有趣的解法呢?小組討論后,讓學(xué)生自行發(fā)言解答。
生1:因為1+10=2+9=3+8=4+7=5+6,所以可湊成5個11,得到55。
生2:可設(shè)S=1+2+3+4+5+6+7+8+9+10,根據(jù)加法交換律,又可寫成 S=10+9+8+7+6+5+4+3+2+1。
上面兩式相加得2S=11+10+......+11=10×11=110
10個
所以我們得到S=55,
即1+2+3+4+5+6+7+8+9+10=55
師:高斯神速計算出1到100所有自然數(shù)的各的方法,和上述兩位同學(xué)的方法相類似。
理由是:1+100=2+99=3+98=......=50+51=101,有50個101,所以1+2+3+......+100=50×101=5050。請同學(xué)們想一下,上面的方法用到等差數(shù)列的哪一個性質(zhì)呢?
生3:數(shù)列{an}是等差數(shù)列,若m+n=p+q,則am+an=ap+aq.
二、教授新課(嘗試推導(dǎo))
師:如果已知等差數(shù)列的首項a1,項數(shù)為n,第n項an,根據(jù)等差數(shù)列的性質(zhì),如何來導(dǎo)出它的前n項和Sn計算公式呢?根據(jù)上面的例子同學(xué)們自己完成推導(dǎo),并請一位學(xué)生板演。
生4:Sn=a1+a2+......an-1+an也可寫成
Sn=an+an-1+......a2+a1
兩式相加得2Sn=(a1+an)+(a2+an-1)+......(an+a1)
n個
=n(a1+an)
所以Sn=
#FormatImgID_0#
(I)
師:好!如果已知等差數(shù)列的首項為a1,公差為d,項數(shù)為n,則an=a1+(n-1)d代入公式(1)得
Sn=na1+
#FormatImgID_1#
d(II) 上面(I)、(II)兩個式子稱為等差數(shù)列的前n項和公式。公式(I)是基本的,我們可以發(fā)現(xiàn),它可與梯形面積公式(上底+下底)×高÷2相類比,這里的上底是等差數(shù)列的首項a1,下底是第n項an,高是項數(shù)n。引導(dǎo)學(xué)生總結(jié):這些公式中出現(xiàn)了幾個量?(a1,d,n,an,Sn),它們由哪幾個關(guān)系聯(lián)系?[an=a1+(n-1)d,Sn=
#FormatImgID_2#
=na1+
#FormatImgID_3#
d];這些量中有幾個可自由變化?(三個)從而了解到:只要知道其中任意三個就可以求另外兩個了。下面我們舉例說明公式(I)和(II)的一些應(yīng)用。
三、公式的應(yīng)用(通過實例演練,形成技能)。
1、直接代公式(讓學(xué)生迅速熟悉公式,即用基本量觀點認(rèn)識公式)例2、計算:
(1)1+2+3+......+n
(2)1+3+5+......+(2n-1)
(3)2+4+6+......+2n
(4)1-2+3-4+5-6+......+(2n-1)-2n
請同學(xué)們先完成(1)-(3),并請一位同學(xué)回答。
生5:直接利用等差數(shù)列求和公式(I),得
(1)1+2+3+......+n=
#FormatImgID_4#
(2)1+3+5+......+(2n-1)=
#FormatImgID_5#
(3)2+4+6+......+2n=
#FormatImgID_6#
=n(n+1)
師:第(4)小題數(shù)列共有幾項?是否為等差數(shù)列?能否直接運用Sn公式求解?若不能,那應(yīng)如何解答?小組討論后,讓學(xué)生發(fā)言解答。
生6:(4)中的數(shù)列共有2n項,不是等差數(shù)列,但把正項和負(fù)項分開,可看成兩個等差數(shù)列,所以
原式=[1+3+5+......+(2n-1)]-(2+4+6+......+2n)
=n2-n(n+1)=-n
生7:上題雖然不是等差數(shù)列,但有一個規(guī)律,兩項結(jié)合都為-1,故可得另一解法:
原式=-1-1-......-1=-n
n個
師:很好!在解題時我們應(yīng)仔細(xì)觀察,尋找規(guī)律,往往會尋找到好的方法。注意在運用Sn公式時,要看清等差數(shù)列的項數(shù),否則會引起錯解。
例3、(1)數(shù)列{an}是公差d=-2的等差數(shù)列,如果a1+a2+a3=12,a8+a9+a10=75,求a1,d,S10。
生8:(1)由a1+a2+a3=12得3a1+3d=12,即a1+d=4
又∵d=-2,∴a1=6
∴S12=12 a1+66×(-2)=-60
生9:(2)由a1+a2+a3=12,a1+d=4
a8+a9+a10=75,a1+8d=25
解得a1=1,d=3 ∴S10=10a1+
#FormatImgID_7#
=145
師:通過上面例題我們掌握了等差數(shù)列前n項和的公式。在Sn公式有5個變量。已知三個變量,可利用構(gòu)造方程或方程組求另外兩個變量(知三求二),請同學(xué)們根據(jù)例3自己編題,作為本節(jié)的課外練習(xí)題,以便下節(jié)課交流。
師:(繼續(xù)引導(dǎo)學(xué)生,將第(2)小題改編)
、贁(shù)列{an}等差數(shù)列,若a1+a2+a3=12,a8+a9+a10=75,且Sn=145,求a1,d,n
②若此題不求a1,d而只求S10時,是否一定非來求得a1,d不可呢?引導(dǎo)學(xué)生運用等差數(shù)列性質(zhì),用整體思想考慮求a1+a10的值。
2、用整體觀點認(rèn)識Sn公式。
例4,在等差數(shù)列{an}, (1)已知a2+a5+a12+a15=36,求S16;(2)已知a6=20,求S11。(教師啟發(fā)學(xué)生解)
師:來看第(1)小題,寫出的計算公式S16=
#FormatImgID_8#
=8(a1+a6)與已知相比較,你發(fā)現(xiàn)了什么?
生10:根據(jù)等差數(shù)列的性質(zhì),有a1+a16=a2+a15=a5+a12=18,所以S16=8×18=144。
師:對!(簡單小結(jié))這個題目根據(jù)已知等式是不能直接求出a1,a16和d的,但由等差數(shù)列的性質(zhì)可求a1與an的和,于是這個問題就得到解決。這是整體思想在解數(shù)學(xué)問題的體現(xiàn)。
師:由于時間關(guān)系,我們對等差數(shù)列前n項和公式Sn的運用一一剖析,引導(dǎo)學(xué)生觀察當(dāng)d≠0時,Sn是n的二次函數(shù),那么從二次(或一次)的函數(shù)的觀點如何來認(rèn)識Sn公式后,這留給同學(xué)們課外繼續(xù)思考。
最后請大家課外思考Sn公式(1)的逆命題:
已知數(shù)列{an}的前n項和為Sn,若對于所有自然數(shù)n,都有Sn=
#FormatImgID_9#
。數(shù)列{an}是否為等差數(shù)列,并說明理由。
四、小結(jié)與作業(yè)。
師:接下來請同學(xué)們一起來小結(jié)本節(jié)課所講的內(nèi)容。
生11:1、用倒序相加法推導(dǎo)等差數(shù)列前n項和公式。
2、用所推導(dǎo)的兩個公式解決有關(guān)例題,熟悉對Sn公式的運用。
生12:1、運用Sn公式要注意此等差數(shù)列的項數(shù)n的值。
2、具體用Sn公式時,要根據(jù)已知靈活選擇公式(I)或(II),掌握知三求二的解題通法。
3、當(dāng)已知條件不足以求此項a1和公差d時,要認(rèn)真觀察,靈活應(yīng)用等差數(shù)列的有關(guān)性質(zhì),看能否用整體思想的方法求a1+an的值。
師:通過以上幾例,說明在解題中靈活應(yīng)用所學(xué)性質(zhì),要糾正那種不明理由盲目套用公式的學(xué)習(xí)方法。同時希望大家在學(xué)習(xí)中做一個有心人,去發(fā)現(xiàn)更多的性質(zhì),主動積極地去學(xué)習(xí)。
本節(jié)所滲透的數(shù)學(xué)方法;觀察、嘗試、分析、歸納、類比、特定系數(shù)等。
數(shù)學(xué)思想:類比思想、整體思想、方程思想、函數(shù)思想等。
【高中數(shù)學(xué)數(shù)列說課稿】相關(guān)文章:
蘇教版高中數(shù)學(xué)數(shù)列說課稿11-25
高中數(shù)學(xué)數(shù)列說課稿詳解12-31
高中數(shù)學(xué)數(shù)列說課稿范文03-13
數(shù)列高中數(shù)學(xué)說課稿范文12-04
高中數(shù)學(xué)數(shù)列說課稿5篇11-20
高中數(shù)學(xué)《等差數(shù)列》說課稿09-06
高中數(shù)學(xué)等比數(shù)列說課稿04-08