亚洲国产日韩欧美在线a乱码,国产精品路线1路线2路线,亚洲视频一区,精品国产自,www狠狠,国产情侣激情在线视频免费看,亚洲成年网站在线观看

高中數(shù)學說課稿

時間:2021-08-19 09:45:20 高中說課稿 我要投稿

實用的高中數(shù)學說課稿模板匯總十篇

  作為一名教職工,通常會被要求編寫說課稿,借助說課稿可以更好地提高教師理論素養(yǎng)和駕馭教材的能力。那么大家知道正規(guī)的說課稿是怎么寫的嗎?以下是小編為大家整理的高中數(shù)學說課稿10篇,僅供參考,歡迎大家閱讀。

實用的高中數(shù)學說課稿模板匯總十篇

高中數(shù)學說課稿 篇1

  尊敬的各位專家,評委:

  上午好!

  根據(jù)新課改的理論標準,我將從教材分析,學情分析,教學目標分析,學法、教法分析,教學過程分析,以及板書設計這六個方面來談談我對教材的理解和教學的設計。

  一、教材分析

  地位和作用:

  《______________________》是北師大版高中數(shù)學必修二的第______章“__________”的第________節(jié)內(nèi)容。

  本節(jié)是在學習了________________________________________之后編排的。通過本節(jié)課的學習,既可以對_________________________________的知識進一步鞏固和深化,又可以為后面學習_________________________打下基礎,所以_________________是本章的重要內(nèi)容。此外,《________________________》的知識與我們?nèi)粘I、生產(chǎn)、科學研究有著密切的聯(lián)系,因此學習這部分有著廣泛的現(xiàn)實意義。

  二、學情分析

  1、學生已熟悉掌握______

  2、學生的認知規(guī)律,是由整體到局部,具體到抽象發(fā)展的。

  3、學生思維活躍,積極性高,已初步形成對數(shù)學問題的合作探究能力

  4、學生層次參差不齊,個體差異還比較明顯

  三、教學目標分析

  根據(jù)《教學大綱》的要求和學生已有的知識基礎和認知能力,確定以下教學目標:

  1、知識與技能:

  2、過程與方法:通過___學習,體會__的思想,培養(yǎng)學生提出問題,分析問題,解決問題的能力,提高交流表達能力,提高獨立獲取知識的能力。

  3、情感態(tài)度與價值觀:培養(yǎng)把握空間圖形的能力,欣賞空間圖形所反應的數(shù)學美(認識數(shù)學內(nèi)容之間的內(nèi)在聯(lián)系,加強數(shù)形結(jié)合的思想,形成正確的數(shù)學觀)。

  教學重點:

  難點:

  四、學法、教法分析

 。ㄒ唬⿲W法

  首先,通過自學探究,培養(yǎng)學生的分析、歸納能力,提高學生合作學習的能力,學生課堂中體現(xiàn)自我,學會尋找問題的突破口,在探究中學會思考,在合作中學會推進,在觀察中學會比較,進而推進整個教學程序的展開。

  其次,教學過程中,我想適時地根據(jù)學生的“最近發(fā)展區(qū)”搭建平臺,充分發(fā)揮“教師的主導作用和學生的主體地位相統(tǒng)一的教學規(guī)律”,

  從學生原有的知識和能力出發(fā),指導學生學會觀察、分析、歸納問題的能力。

  學生只有不斷地解決問題、產(chǎn)生成就感的過程中,才能真正地提高學習的興趣,也只有這樣才能“學”有新“思”,“思”有新“得”。

 。ǘ┙谭

  數(shù)學教育家波利亞曾經(jīng)說過:“學習任何知識的最佳途徑即是由自己去發(fā)現(xiàn),因為這種發(fā)現(xiàn)理解最深刻,也最容易掌握其中的發(fā)展規(guī)律、性質(zhì)和聯(lián)系!备鶕(jù)學生的認知特點和知識水平,為落實重點、突破難點,本著以人為本,以學為中心的思想,本節(jié)課我將采用啟發(fā)式、合作探究的方式來進行教學。運用多媒體演示輔助教學的一種手段,以激發(fā)學生的求知欲,使學生主動參與數(shù)學實踐活動,以獨立思考和相互交流的形式,在教師的指導下發(fā)現(xiàn)問題、分析問題和解決問題。

  五、教學過程分析

  1、創(chuàng)設情境,引入問題。

  新課標指出:“應該讓學生在具體生動的情境中學習數(shù)學”。在本節(jié)課的教學中,從我們熟悉的生活情境中提出問題,問題的設計改變了傳統(tǒng)目的明確的設計方式,給學生最大的思考空間,充分體現(xiàn)學生主體地位。

  2、發(fā)現(xiàn)問題,探究新知。

  數(shù)學概念的形成來自解決實際問題和數(shù)學自身發(fā)展的需要.但概念的高度抽象,造成了難懂、難教和難學,這就需要讓學生置身于符合自身實際的學習活動中去,從自己的經(jīng)驗和已有的知識基礎出發(fā),經(jīng)歷

  “數(shù)學化”、“再創(chuàng)造”的活動過程.

  3、深入探究,加深理解。

  有效的數(shù)學學習過程,不能單純的模仿與記憶,數(shù)學思想的領悟和學習過程更是如此。讓學生在解題過程中親身經(jīng)歷和實踐體驗,師生互動學習,生生合作交流,共同探究.

  4、當堂訓練,鞏固提高。

  通過學生的主體參與,使學生深切體會到本節(jié)課的主要內(nèi)容和思想方法,從而實現(xiàn)對知識識的再次深化。

  5、小結(jié)歸納,拓展深化。

  小結(jié)歸納不僅是對知識的簡單回顧,還要發(fā)揮學生的主體地位,從知識、方法、經(jīng)驗等方面進行總結(jié)。

  6、作業(yè)設計

  作業(yè)分為必做題和選做題。

  針對學生能力和水平的差異,進行分層訓練,在所有學生獲得共同知識基礎和基本能力的同時,讓學有余力的學生將學習從課堂延伸到課外,獲得更大的能力提升,這體現(xiàn)新課改理念,也是因材施教的教學原則的具體運用。

  現(xiàn)代數(shù)學教學觀和新課改要求教學能從“讓學生學會”向“讓學生會學”轉(zhuǎn)變,使數(shù)學教學真正成為數(shù)學活動的教學。所以,本節(jié)課我們不僅僅是單純的傳授知識,而更應該重視對數(shù)學方法的滲透。從熟悉的知識出發(fā),學生自主探索、合作交流激發(fā)學生的學習興趣,突破難點,培養(yǎng)學生發(fā)現(xiàn)問題、解決問題的能力

  六、板書設計

  板書要基本體現(xiàn)整堂課的內(nèi)容與方法,體現(xiàn)課堂進程,能簡明扼要反映知識結(jié)構及其相互聯(lián)系;突出本節(jié)重難點,能指導教師的教學進程、引導學生探索知識,啟迪學生思維。

  我的說課到此結(jié)束,敬請各位專家、評委批評指正。

  謝謝!

高中數(shù)學說課稿 篇2

  一、說教材

  1.從在教材中的地位與作用來看

  《等比數(shù)列的前n項和》是數(shù)列這一章中的一個重要內(nèi)容,它不僅在現(xiàn)實生活中有著廣泛的實際應用,如儲蓄、分期付款的有關計算等等,而且公式推導過程中所滲透的類比、化歸、分類討論、整體變換和方程等思想方法,都是學生今后學習和工作中必備的數(shù)學素養(yǎng).

  2.從學生認知角度看

  從學生的思維特點看,很容易把本節(jié)內(nèi)容與等差數(shù)列前n項和從公式的形成、特點等方面進行類比,這是積極因素,應因勢利導.不利因素是:本節(jié)公式的推導與等差數(shù)列前n項和公式的推導有著本質(zhì)的不同,這對學生的思維是一個突破,另外,對于q=1這一特殊情況,學生往往容易忽視,尤其是在后面使用的過程中容易出錯.

  3.學情分析

  教學對象是剛進入高中的學生,雖然具有一定的分析問題和解決問題的能力,邏輯思維能力也初步形成,但由于年齡的原因,思維盡管活躍、敏捷,卻缺乏冷靜、深刻,因此片面、不嚴謹.

  4.重點、難點

  教學重點:公式的推導、公式的特點和公式的運用.

  教學難點:公式的推導方法和公式的靈活運用.

  公式推導所使用的“錯位相減法”是高中數(shù)學數(shù)列求和方法中最常用的方法之一,它蘊含了重要的數(shù)學思想,所以既是重點也是難點.

  二、說目標

  知識與技能目標:

  理解并掌握等比數(shù)列前n項和公式的推導過程、公式的特點,在此基礎上能初步應用公式解決與之有關的問題.

  過程與方法目標:

  通過對公式推導方法的探索與發(fā)現(xiàn),向?qū)W生滲透特殊到一般、類比與轉(zhuǎn)化、分類討論等數(shù)學思想,培養(yǎng)學生觀察、比較、抽象、概括等邏輯思維能力和逆向思維的能力.

  情感與態(tài)度價值觀:

  通過對公式推導方法的探索與發(fā)現(xiàn),優(yōu)化學生的思維品質(zhì),滲透事物之間等價轉(zhuǎn)化和理論聯(lián)系實際的辯證唯物主義觀點.

  三、說過程

  學生是認知的主體,設計教學過程必須遵循學生的認知規(guī)律,盡可能地讓學生去經(jīng)歷知識的形成與發(fā)展過程,結(jié)合本節(jié)課的特點,我設計了如下的教學過程:

  1.創(chuàng)設情境,提出問題

  在古印度,有個名叫西薩的人,發(fā)明了國際象棋,當時的印度國王大為贊賞,對他說:我可以滿足你的任何要求.西薩說:請給我棋盤的64個方格上,第一格放1粒小麥,第二格放2粒,第三格放4粒,往后每一格都是前一格的兩倍,直至第64格.國王令宮廷數(shù)學家計算,結(jié)果出來后,國王大吃一驚.為什么呢?

  設計意圖:設計這個情境目的是在引入課題的同時激發(fā)學生的興趣,調(diào)動學習的積極性.故事內(nèi)容緊扣本節(jié)課的主題與重點.

  此時我問:同學們,你們知道西薩要的是多少粒小麥嗎?引導學生寫出麥?倲(shù).帶著這樣的問題,學生會動手算了起來,他們想到用計算器依次算出各項的值,然后再求和.這時我對他們的這種思路給予肯定.

  設計意圖:在實際教學中,由于受課堂時間限制,教師舍不得花時間讓學生去做所謂的“無用功”,急急忙忙地拋出“錯位相減法”,這樣做有悖學生的認知規(guī)律:求和就想到相加,這是合乎邏輯順理成章的事,教師為什么不相加而馬上相減呢?在整個教學關鍵處學生難以轉(zhuǎn)過彎來,因而在教學中應舍得花時間營造知識形成過程的氛圍,突破學生學習的障礙.同時,形成繁難的情境激起了學生的求知欲,迫使學生急于尋求解決問題的新方法,為后面的教學埋下伏筆.

  2.師生互動,探究問題

  在肯定他們的思路后,我接著問:1,2,22,…,263是什么數(shù)列?有何特征?應歸結(jié)為什么數(shù)學問題呢?

  探討1:,記為(1)式,注意觀察每一項的特征,有何聯(lián)系?(學生會發(fā)現(xiàn),后一項都是前一項的2倍)

  探討2:如果我們把每一項都乘以2,就變成了它的后一項,(1)式兩邊同乘以2則有,記為(2)式.比較(1)(2)兩式,你有什么發(fā)現(xiàn)?

  設計意圖:留出時間讓學生充分地比較,等比數(shù)列前n項和的公式推導關鍵是變“加”為“減”,在教師看來這是“天經(jīng)地義”的,但在學生看來卻是“不可思議”的,因此教學中應著力在這兒做文章,從而抓住培養(yǎng)學生的辯證思維能力的良好契機.

  經(jīng)過比較、研究,學生發(fā)現(xiàn):(1)、(2)兩式有許多相同的項,把兩式相減,相同的項就消去了,得到:.老師指出:這就是錯位相減法,并要求學生縱觀全過程,反思:為什么(1)式兩邊要同乘以2呢?

  設計意圖:經(jīng)過繁難的計算之苦后,突然發(fā)現(xiàn)上述解法,不禁驚呼:真是太簡潔了!讓學生在探索過程中,充分感受到成功的情感體驗,從而增強學習數(shù)學的興趣和學好數(shù)學的信心.

  3.類比聯(lián)想,解決問題

  這時我再順勢引導學生將結(jié)論一般化,

  這里,讓學生自主完成,并喊一名學生上黑板,然后對個別學生進行指導.

  設計意圖:在教師的指導下,讓學生從特殊到一般,從已知到未知,步步深入,讓學生自己探究公式,從而體驗到學習的愉快和成就感.

  對不對?這里的q能不能等于1?等比數(shù)列中的公比能不能為1?q=1時是什么數(shù)列?此時sn=?(這里引導學生對q進行分類討論,得出公式,同時為后面的例題教學打下基礎.)

  再次追問:結(jié)合等比數(shù)列的通項公式an=a1qn-1,如何把sn用a1、an、q表示出來?(引導學生得出公式的另一形式)

  設計意圖:通過反問精講,一方面使學生加深對知識的認識,完善知識結(jié)構,另一方面使學生由簡單地模仿和接受,變?yōu)閷χR的主動認識,從而進一步提高分析、類比和綜合的能力.這一環(huán)節(jié)非常重要,盡管時間有時比較少,甚至僅僅幾句話,然而卻有畫龍點睛之妙用.

  4.討論交流,延伸拓展

高中數(shù)學說課稿 篇3

  1. 教材分析

  1-1教學內(nèi)容及包含的知識點

  (1) 本課內(nèi)容是高中數(shù)學第二冊第七章第三節(jié)《兩條直線的位置關系》的最后一個內(nèi)容。

  (2) 包含知識點:點到直線的距離公式和兩平行線的距離公式。

  1-2教材所處地位、作用和前后聯(lián)系

  本節(jié)課是兩條直線位置關系的最后一個內(nèi)容,在此之前,有對兩線位置關系的定性刻畫:平行、垂直,以及對相交兩線的定量刻畫:夾角、交點。在此之后,有圓錐曲線方程,因而本節(jié)既是對前面兩線垂直、兩線交點的復習,又是為后面計算點線距離(在直線和圓錐曲線構成的組合圖形中)提供一套工具。

  可見,本課有承前啟后的作用。

  1-3教學大綱要求

  掌握點到直線的距離公式

  1-4高考大綱要求及在高考中的顯示形式

  掌握點到直線的距離公式。在近年的高考中,通常以直線和圓錐曲線構成的組合圖形為背景,判斷直線和圓錐曲線的位置或構成三角形求高,涉及絕對值,直線垂直,最小值等。

  1-5教學目標及確定依據(jù)

  教學目標

  (1) 掌握點到直線的距離的概念、公式及公式的推導過程,能用公式來求點線距離和線線距離。

  (2) 培養(yǎng)學生探究性思維方法和由特殊到一般的研究能力。

  (3) 認識事物之間相互聯(lián)系、互相轉(zhuǎn)化的辯證法思想,培養(yǎng)學生轉(zhuǎn)化知識的能力。

  (4) 滲透人文精神,既注重學生的智慧獲得,又注重學生的情感發(fā)展。

  確定依據(jù):

  中華人民共和國教育部制定的《全日制普通高級中學數(shù)學教學大綱》(20xx年4月第一版),《基礎教育課程改革綱要(試行)》,《高考考試說明》(20xx年)

  1-6教學重點、難點、關鍵

  (1) 重點:點到直線的距離公式

  確定依據(jù):由本節(jié)在教材中的地位確定

  (2) 難點:點到直線的距離公式的推導

  確定依據(jù):根據(jù)定義進行推導,思路自然,但運算繁瑣;用等積法推導,運算較簡單,但思路不自然,學生易被動,主體性得不到體現(xiàn)。

  分析“嘗試性題組”解題思路可突破難點

  (3)關鍵:實現(xiàn)兩個轉(zhuǎn)化。一是將點線距離轉(zhuǎn)化為定點到垂足的距離;二是利用等積法將其轉(zhuǎn)化為直角三角形中三頂點的距離。

  2.教法

  2-1發(fā)現(xiàn)法:本節(jié)課為了培養(yǎng)學生探究性思維目標,在教學過程中,使老師的主導性和學生的主體性有機結(jié)合,使學生能夠愉快地自覺學習,通過學生自己練習“嘗試性題組”,引導、啟發(fā)學生分析、發(fā)現(xiàn)、比較、論證等,從而形成完整的數(shù)學模型。

  確定依據(jù):

  (1)美國教育學家波利亞的教與學三原則:主動學習原則,最佳動機原則,階段漸進性原則。

  (2)事物之間相互聯(lián)系,相互轉(zhuǎn)化的辯證法思想。

  2-2教具:多媒體和黑板等傳統(tǒng)教具

  3. 學法

  3-1發(fā)現(xiàn)法:豐富學生的數(shù)學活動,學生經(jīng)過練習、觀察、分析、探索等步驟,自己發(fā)現(xiàn)解決問題的方法,比較論證后得到一般性結(jié)論,形成完整的數(shù)學模型,再運用所得理論和方法去解決問題。

  一句話:還課堂以生命力,還學生以活力。

  3-2學情:

  (1)知識能力狀況,本節(jié)為兩線位置關系的最后一個內(nèi)容,在這之前學生已經(jīng)系統(tǒng)的學習了直線方程的各種形式,有對兩線位置關系的定性認識和對兩線相交的定量認識,為本節(jié)推證公式涉及到直線方程、兩線垂直、兩線交點作好了知識儲備。同時學生對解析幾何的實質(zhì)中,用坐標系溝通直線與方程的研究辦法,有了初步認識,數(shù)形結(jié)合的思想正逐漸趨于成熟。

  (2)心理特點:又見“點到直線的距離”(初中已學習定義),學生既熟悉又陌生,既困惑又好奇,探詢動機由此而生。

  (3)生活經(jīng)驗:數(shù)學源于生活,生活中的點線距隨處可見,怎樣將實際問題數(shù)學化,是每個追求成長、追求發(fā)展的學生所渴求的一種研究能力。豐富的課堂數(shù)學活動能夠讓他們真正參與,體驗過程,錘煉意志,培養(yǎng)能力。

  3-3學具:直尺、三角板

  4. 教學評價

  學生完成反思性學習報告,書寫要求:

  (1) 整理知識結(jié)構。

  (2) 總結(jié)所學到的基本知識,技能和數(shù)學思想方法。

  (3) 總結(jié)在學習過程中的經(jīng)驗,發(fā)明發(fā)現(xiàn),學習障礙等,說明產(chǎn)生障礙的原因。

  (4) 談談你對老師教法的建議和要求。

  作用:

  (1) 通過反思使學生對所學知識系統(tǒng)化。反思的過程實際上是學生思維內(nèi)化,知識深化和認知牢固化的一個心理活動過程。

  (2) 報告的寫作本身就是一種創(chuàng)造性活動。

  (3) 及時了解學生學習過程中的知識缺陷,思維障礙,有利于教師了解學生對自己的教法的滿意度和效果,以便作出及時調(diào)整,及時進行補償性教學。

  5. 板書設計

  (略)

  6. 教學的反思總結(jié)

  心理歷練,得意之處,困惑之處,知識的傳承發(fā)展,如何修正完善等。

高中數(shù)學說課稿 篇4

  一、教材分析

  1!吨笖(shù)函數(shù)》在教材中的地位、作用和特點

  《指數(shù)函數(shù)》是人教版高中數(shù)學(必修)第一冊第二章“函數(shù)”的第六節(jié)內(nèi)容,是在學習了《指數(shù)》一節(jié)內(nèi)容之后編排的。通過本節(jié)課的學習,既可以對指數(shù)和函數(shù)的概念等知識進一步鞏固和深化,又可以為后面進一步學習對數(shù)、對數(shù)函數(shù)尤其是利用互為反函數(shù)的圖象間的關系來研究對數(shù)函數(shù)的性質(zhì)打下堅實的概念和圖象基礎,又因為《指數(shù)函數(shù)》是進入高中以后學生遇到的第一個系統(tǒng)研究的函數(shù),對高中階段研究對數(shù)函數(shù)、三角函數(shù)等完整的函數(shù)知識,初步培養(yǎng)函數(shù)的應用意識打下了良好的學習基礎,所以《指數(shù)函數(shù)》不僅是本章《函數(shù)》的重點內(nèi)容,也是高中學段的主要研究內(nèi)容之一,有著不可替代的重要作用。

  此外,《指數(shù)函數(shù)》的知識與我們的日常生產(chǎn)、生活和科學研究有著緊密的聯(lián)系,尤其體現(xiàn)在細胞分裂、貸款利率的計算和考古中的年代測算等方面,因此學習這部分知識還有著廣泛的現(xiàn)實意義。本節(jié)內(nèi)容的特點之一是概念性強,特點之二是凸顯了數(shù)學圖形在研究函數(shù)性質(zhì)時的重要作用。

  2。教學目標、重點和難點

  通過初中學段的學習和高中對集合、函數(shù)等知識的系統(tǒng)學習,學生對函數(shù)和圖象的關系已經(jīng)構建了一定的認知結(jié)構,主要體現(xiàn)在三個方面:

  知識維度:對正比例函數(shù)、反比例函數(shù)、一次函數(shù),二次函數(shù)等最簡單的函數(shù)概念和性質(zhì)已有了初步認識,能夠從初中運動變化的角度認識函數(shù)初步轉(zhuǎn)化到從集合與對應的觀點來認識函數(shù)。

  技能維度:學生對采用“描點法”描繪函數(shù)圖象的方法已基本掌握,能夠為研究《指數(shù)函數(shù)》的性質(zhì)做好準備。

  素質(zhì)維度:由觀察到抽象的數(shù)學活動過程已有一定的體會,已初步了解了數(shù)形結(jié)合的思想。

  鑒于對學生已有的知識基礎和認知能力的分析,根據(jù)《教學大綱》的要求,我確定本節(jié)課的教學目標、教學重點和難點如下:

 。1)知識目標:①掌握指數(shù)函數(shù)的概念;②掌握指數(shù)函數(shù)的圖象和性質(zhì);③能初步利用指數(shù)函數(shù)的概念解決實際問題;

 。2)技能目標:①滲透數(shù)形結(jié)合的基本數(shù)學思想方法②培養(yǎng)學生觀察、聯(lián)想、類比、猜測、歸納的能力;

 。3)情感目標:①體驗從特殊到一般的學習規(guī)律,認識事物之間的普遍聯(lián)系與相互轉(zhuǎn)化,培養(yǎng)學生用聯(lián)系的觀點看問題②通過教學互動促進師生情感,激發(fā)學生的學習興趣,提高學生抽象、概括、分析、綜合的能力③領會數(shù)學科學的應用價值。

 。4)教學重點:指數(shù)函數(shù)的圖象和性質(zhì)。

  (5)教學難點:指數(shù)函數(shù)的圖象性質(zhì)與底數(shù)a的關系。

  突破難點的關鍵:尋找新知生長點,建立新舊知識的聯(lián)系,在理解概念的基礎上充分結(jié)合圖象,利用數(shù)形結(jié)合來掃清障礙。

  二、教法設計

  由于《指數(shù)函數(shù)》這節(jié)課的特殊地位,在本節(jié)課的教法設計中,我力圖通過這一節(jié)課的教學達到不僅使學生初步理解并能簡單應用指數(shù)函數(shù)的知識,更期望能引領學生掌握研究初等函數(shù)圖象性質(zhì)的一般思路和方法,為今后研究其它的函數(shù)做好準備,從而達到培養(yǎng)學生學習能力的目的,我根據(jù)自己對“誘思探究”教學模式和“情景式”教學模式的認識,將二者結(jié)合起來,主要突出了幾個方面:

  1。創(chuàng)設問題情景。按照指數(shù)函數(shù)的在生活中的實際背景給出兩個實例,充分調(diào)動學生的學習興趣,激發(fā)學生的探究心理,順利引入課題,而這兩個例子又恰好為研究指數(shù)函數(shù)中底數(shù)大于1和底數(shù)大于0小于1的圖象做好了準備。

  2。強化“指數(shù)函數(shù)”概念。引導學生結(jié)合指數(shù)的有關概念來歸納出指數(shù)函數(shù)的定義,并向?qū)W生指出指數(shù)函數(shù)的形式特點,請學生思考對于底數(shù)a是否需要限制,如不限制會有什么問題出現(xiàn),這樣避免了學生對于底數(shù)a范圍分類的不清楚,也為研究指數(shù)函數(shù)的圖象做了“分類討論”的鋪墊。

  3。突出圖象的作用。在數(shù)學學習過程中,圖形始終使我們需要借助的重要輔助手段。一位數(shù)學家曾經(jīng)說過“數(shù)離形時少直觀,形離數(shù)時難入微”,而在研究指數(shù)函數(shù)的性質(zhì)時,更是直接由圖象觀察得出性質(zhì),因此圖象發(fā)揮了主要的作用。

  4。注意數(shù)學與生活和實踐的聯(lián)系。數(shù)學的本質(zhì)是來源于生活,服務于實踐。在課堂教學的引入、例題的講解和課外知識的拓展部分,都介紹了與指數(shù)函數(shù)息息相關的生活問題,力圖使學生了解到數(shù)學的基礎學科作用,培養(yǎng)學生的數(shù)學應用意識。

  三、學法指導

  本節(jié)課是在學習完“指數(shù)”的概念和運算后編排的,針對學生實際情況,我主要在以下幾個方面做了嘗試:

  1。再現(xiàn)原有認知結(jié)構。在引入兩個生活實例后,請學生回憶有關指數(shù)的概念,幫助學生再現(xiàn)原有認知結(jié)構,為理解指數(shù)函數(shù)的概念做好準備。

  2。領會常見數(shù)學思想方法。在借助圖象研究指數(shù)函數(shù)的性質(zhì)時會遇到分類討論、數(shù)形結(jié)合等基本數(shù)學思想方法,這些方法將會貫穿整個高中的數(shù)學學習。

  3。在互相交流和自主探

高中數(shù)學說課稿 篇5

  一、教材分析:

  1、教材的地位與作用:

  線性規(guī)劃是運籌學的一個重要分支,在實際生活中有著廣泛的應用。本節(jié)內(nèi)容是在學習了不等式、直線方程的基礎上,利用不等式和直線方程的有關知識展開的,它是對二元一次不等式的深化和再認識、再理解。通過這一部分的學習,使學生進一步了解數(shù)學在解決實際問題中的應用,體驗數(shù)形結(jié)合和轉(zhuǎn)化的思想方法,培養(yǎng)學生學習數(shù)學的興趣、應用數(shù)學的意識和解決實際問題的能力。

  2、教學重點與難點:

  重點:畫可行域;在可行域內(nèi),用圖解法準確求得線性規(guī)劃問題的最優(yōu)解。

  難點:在可行域內(nèi),用圖解法準確求得線性規(guī)劃問題的最優(yōu)解。

  二、目標分析:

  在新課標讓學生經(jīng)歷“學數(shù)學、做數(shù)學、用數(shù)學”的理念指導下,本節(jié)課的教學目標分設為知識目標、能力目標和情感目標。

  知識目標:

  1、了解線性規(guī)劃的意義,了解線性約束條件、線性目標函數(shù)、可行解、可行

  域和最優(yōu)解等概念;

  2、理解線性規(guī)劃問題的圖解法;

  3、會利用圖解法求線性目標函數(shù)的最優(yōu)解.

  能力目標:

  1、在應用圖解法解題的過程中培養(yǎng)學生的觀察能力、理解能力。

  2、在變式訓練的過程中,培養(yǎng)學生的分析能力、探索能力。

  3、在對具體事例的感性認識上升到對線性規(guī)劃的理性認識過程中,培養(yǎng)學生運用數(shù)形結(jié)合思想解題的能力和化歸能力。

  情感目標:

  1、讓學生體驗數(shù)學來源于生活,服務于生活,體驗數(shù)學在建設節(jié)約型社會中的作用,品嘗學習數(shù)學的樂趣。

  2、讓學生體驗數(shù)學活動充滿著探索與創(chuàng)造,培養(yǎng)學生勤于思考、勇于探索的精神;

  3、讓學生學會用運動觀點觀察事物,了解事物之間從一般到特殊、從特殊到一般的辨證關系,滲透辯證唯物主義認識論的思想。

高中數(shù)學說課稿 篇6

  一、教材分析

  1、從在教材中的地位與作用來看

  《等比數(shù)列的前n項和》是數(shù)列這一章中的一個重要內(nèi)容,它不僅在現(xiàn)實生活中有著廣泛的實際應用,如儲蓄、分期付款的有關計算等等,而且公式推導過程中所滲透的類比、化歸、分類討論、整體變換和方程等思想方法,都是學生今后學習和工作中必備的數(shù)學素養(yǎng)。

  2、從學生認知角度看

  從學生的思維特點看,很容易把本節(jié)內(nèi)容與等差數(shù)列前n項和從公式的形成、特點等方面進行類比,這是積極因素,應因勢利導。不利因素是:本節(jié)公式的推導與等差數(shù)列前n項和公式的推導有著本質(zhì)的不同,這對學生的思維是一個突破,另外,對于q=1這一特殊情況,學生往往容易忽視,尤其是在后面使用的過程中容易出錯。

  3、學情分析

  教學對象是剛進入高中的學生,雖然具有一定的分析問題和解決問題的能力,邏輯思維能力也初步形成,但由于年齡的原因,思維盡管活躍、敏捷,卻缺乏冷靜、深刻,因此片面、不嚴謹。

  4、重點、難點

  教學重點:公式的推導、公式的特點和公式的運用。

  教學難點:公式的推導方法和公式的靈活運用。

  公式推導所使用的"錯位相減法"是高中數(shù)學數(shù)列求和方法中最常用的方法之一,它蘊含了重要的數(shù)學思想,所以既是重點也是難點。

  二、目標分析

  知識與技能目標:

  理解并掌握等比數(shù)列前n項和公式的推導過程、公式的特點,在此基礎上能初步應用公式解決與之有關的問題。

  過程與方法目標:

  通過對公式推導方法的探索與發(fā)現(xiàn),向?qū)W生滲透特殊到一般、類比與轉(zhuǎn)

  化、分類討論等數(shù)學思想,培養(yǎng)學生觀察、比較、抽象、概括等邏輯思維能力和逆向思維的能力。

  情感與態(tài)度價值觀:

  通過對公式推導方法的探索與發(fā)現(xiàn),優(yōu)化學生的思維品質(zhì),滲透事物之間等價轉(zhuǎn)化和理論聯(lián)系實際的辯證唯物主義觀點。

  三、過程分析

  學生是認知的主體,設計教學過程必須遵循學生的認知規(guī)律,盡可能地讓學生去經(jīng)歷知識的形成與發(fā)展過程,結(jié)合本節(jié)課的特點,我設計了如下的教學過程:

  1、創(chuàng)設情境,提出問題

  在古印度,有個名叫西薩的人,發(fā)明了國際象棋,當時的印度國王大為贊賞,對他說:我可以滿足你的任何要求。西薩說:請給我棋盤的64個方格上,第一格放1粒小麥,第二格放2粒,第三格放4粒,往后每一格都是前一格的兩倍,直至第64格。國王令宮廷數(shù)學家計算,結(jié)果出來后,國王大吃一驚。為什么呢?

  設計意圖:設計這個情境目的是在引入課題的同時激發(fā)學生的興趣,調(diào)動學習的積極性。故事內(nèi)容緊扣本節(jié)課的主題與重點。

  此時我問:同學們,你們知道西薩要的是多少粒小麥嗎?引導學生寫出麥?倲(shù)。帶著這樣的問題,學生會動手算了起來,他們想到用計算器依次算出各項的值,然后再求和。這時我對他們的這種思路給予肯定。

  設計意圖:在實際教學中,由于受課堂時間限制,教師舍不得花時間讓學生去做所謂的"無用功",急急忙忙地拋出"錯位相減法",這樣做有悖學生的認知規(guī)律:求和就想到相加,這是合乎邏輯順理成章的事,教師為什么不相加而馬上相減呢?在整個教學關鍵處學生難以轉(zhuǎn)過彎來,因而在教學中應舍得花時間營造知識形成過程的氛圍,突破學生學習的障礙。同時,形成繁難的情境激起了學生的求知欲,迫使學生急于尋求解決問題的新方法,為后面的教學埋下伏筆、

  2、師生互動,探究問題

  在肯定他們的思路后,我接著問:1,2,22,.....,263是什么數(shù)列?有何特征?應歸結(jié)為什么數(shù)學問題呢?

  探討1:,記為(1)式,注意觀察每一項的特征,有何聯(lián)系?(學生會發(fā)現(xiàn),后一項都是前一項的2倍)

  探討2:如果我們把每一項都乘以2,就變成了它的后一項,(1)式兩邊同乘以2則有,記為(2)式。比較(1)(2)兩式,你有什么發(fā)現(xiàn)?

  設計意圖:留出時間讓學生充分地比較,等比數(shù)列前n項和的公式推導關鍵是變"加"為"減",在教師看來這是"天經(jīng)地義"的,但在學生看來卻是"不可思議"的,因此教學中應著力在這兒做文章,從而抓住培養(yǎng)學生的辯證思維能力的良好契機。

  經(jīng)過比較、研究,學生發(fā)現(xiàn):(1)、(2)兩式有許多相同的項,把兩式相減,相同的項就消去了,得到:。老師指出:這就是錯位相減法,并要求學生縱觀全過程,反思:為什么(1)式兩邊要同乘以2呢?

  設計意圖:經(jīng)過繁難的計算之苦后,突然發(fā)現(xiàn)上述解法,不禁驚呼:真是太簡潔了!讓學生在探索過程中,充分感受到成功的情感體驗,從而增強學習數(shù)學的興趣和學好數(shù)學的信心。

  3、類比聯(lián)想,解決問題

  這時我再順勢引導學生將結(jié)論一般化,

  這里,讓學生自主完成,并喊一名學生上黑板,然后對個別學生進行指導。

  設計意圖:在教師的指導下,讓學生從特殊到一般,從已知到未知,步步深入,讓學生自己探究公式,從而體驗到學習的愉快和成就感。

  對不對?這里的q能不能等于1?等比數(shù)列中的公比能不能為1?q=1時是什么數(shù)列?此時sn=?(這里引導學生對q進行分類討論,得出公式,同時為后面的例題教學打下基礎。)

  再次追問:結(jié)合等比數(shù)列的通項公式an=a1qn—1,如何把sn用a1、an、q表示出來?(引導學生得出公式的另一形式)

  設計意圖:通過反問精講,一方面使學生加深對知識的認識,完善知識結(jié)構,另一方面使學生由簡單地模仿和接受,變?yōu)閷χR的主動認識,從而進一步提高分析、類比和綜合的能力。這一環(huán)節(jié)非常重要,盡管時間有時比較少,甚至僅僅幾句話,然而卻有畫龍點睛之妙用。

  4、討論交流,延伸拓展

  在此基礎上,我提出:探究等比數(shù)列前n項和公式,還有其它方法嗎?我們知道,

  那么我們能否利用這個關系而求出sn呢?根據(jù)等比數(shù)列的定義又有,能否聯(lián)想到等比定理從而求出sn呢?

  設計意圖:以疑導思,激發(fā)學生的探索欲望,營造一個讓學生主動觀察、思考、討論的氛圍、以上兩種方法都可以化歸到,這其實就是關于的一個遞推式,遞推數(shù)列有非常重要的研究價值,是研究性學習和課外拓展的極佳資源,它源于課本,又高于課本,對學生的思維發(fā)展有促進作用、

  5、變式訓練,深化認識

  首先,學生獨立思考,自主解題,再請學生上臺來幻燈演示他們的解答,其它同學進行評價,然后師生共同進行總結(jié)。

  設計意圖:采用變式教學設計題組,深化學生對公式的認識和理解,通過直接套用公式、變式運用公式、研究公式特點這三個層次的問題解決,促進學生新的數(shù)學認知結(jié)構的形成。通過以上形式,讓全體學生都參與教學,以此培養(yǎng)學生的參與意識和競爭意識。

  6、例題講解,形成技能

  設計意圖:解題時,以學生分析為主,教師適時給予點撥,該題有意培養(yǎng)學生對含有參數(shù)的問題進行分類討論的數(shù)學思想。

  7、總結(jié)歸納,加深理解

  以問題的形式出現(xiàn),引導學生回顧公式、推導方法,鼓勵學生積極回答,然后老師再從知識點及數(shù)學思想方法兩方面總結(jié)。

  設計意圖:以此培養(yǎng)學生的口頭表達能力,歸納概括能力。

  8、故事結(jié)束,首尾呼應

  最后我們回到故事中的問題,我們可以計算出國王獎賞的小麥約為1、84×1019粒,大約7000億噸,用這么多小麥能從地球到太陽鋪設一條寬10米、厚8米的大道,大約是全世界一年糧食產(chǎn)量的459倍,顯然國王兌現(xiàn)不了他的承諾。

  設計意圖:把引入課題時的懸念給予釋疑,有助于學生克服疲倦、繼續(xù)積極思維。

  9、課后作業(yè),分層練習

  必做:P129練習1、2、3、4

  選作:

 。2)"遠望巍巍塔七層,紅光點點倍加增,共燈三百八十一,請問尖頭幾盞燈?"這首中國古詩的答案是多少?

  設計意圖:出選作題的目的是注意分層教學和因材施教,讓學有余力的學生有思考的空間。

  四、教法分析

  對公式的教學,要使學生掌握與理解公式的來龍去脈,掌握公式的推導方法,理解公式的成立條件,充分體現(xiàn)公式之間的聯(lián)系。在教學中,我采用"問題――探究"的教學模式,把整個課堂分為呈現(xiàn)問題、探索規(guī)律、總結(jié)規(guī)律、應用規(guī)律四個階段。

  利用多媒體輔助教學,直觀地反映了教學內(nèi)容,使學生思維活動得以充分展開,從而優(yōu)化了教學過程,大大提高了課堂教學效率。

  五、評價分析

  本節(jié)課通過三種推導方法的研究,使學生從不同的思維角度掌握了等比數(shù)列前n項和公式。錯位相減:變加為減,等價轉(zhuǎn)化;遞推思想:縱橫聯(lián)系,揭示本質(zhì);等比定理:回歸定義,自然樸實。學生從中深刻地領會到推導過程中所蘊含的數(shù)學思想,培養(yǎng)了學生思維的深刻性、敏銳性、廣闊性、批判性。同時通過精講一題,發(fā)散一串的變式教學,使學生既鞏固了知識,又形成了技能。在此基礎上,通過民主和諧的課堂氛圍,培養(yǎng)了學生自主學習、合作交流的學習習慣,也培養(yǎng)了學生勇于探索、不斷創(chuàng)新的思維品質(zhì)。

高中數(shù)學說課稿 篇7

  一、教學目標

 。ㄒ唬┲R與技能

  1、進一步熟練掌握求動點軌跡方程的基本方法。

  2、體會數(shù)學實驗的直觀性、有效性,提高幾何畫板的操作能力。

  (二)過程與方法

  1、培養(yǎng)學生觀察能力、抽象概括能力及創(chuàng)新能力。

  2、體會感性到理性、形象到抽象的思維過程。

  3、強化類比、聯(lián)想的方法,領會方程、數(shù)形結(jié)合等思想。

 。ㄈ┣楦袘B(tài)度價值觀

  1、感受動點軌跡的動態(tài)美、和諧美、對稱美。

  2、樹立競爭意識與合作精神,感受合作交流帶來的成功感,樹立自信心,激發(fā)提出問題和解決問題的勇氣。

  二、教學重點與難點

  教學重點:運用類比、聯(lián)想的方法探究不同條件下的軌跡。

  教學難點:圖形、文字、符號三種語言之間的過渡。

  三、、教學方法和手段

  教學方法:觀察發(fā)現(xiàn)、啟發(fā)引導、合作探究相結(jié)合的教學方法。啟發(fā)引導學生積極思考并對學生的思維進行調(diào)控,幫助學生優(yōu)化思維過程,在此基礎上,提供給學生交流的機會,幫助學生對自己的思維進行組織和澄清,并能清楚地、準確地表達自己的數(shù)學思維。

  教學手段:利用網(wǎng)絡教室,四人一機,多媒體教學手段。通過上述教學手段,一方面:再現(xiàn)知識產(chǎn)生的過程,通過多媒體動態(tài)演示,突破學生在舊知和新知形成過程中的障礙(靜態(tài)到動態(tài));另一方面:節(jié)省了時間,提高了課堂教學的效率,激發(fā)了學生學習的興趣。

  教學模式:重點中學實施素質(zhì)教育的課堂模式“創(chuàng)設情境、激發(fā)情感、主動發(fā)現(xiàn)、主動發(fā)展”。

  四、教學過程

  1、創(chuàng)設情景,引入課題

  生活中我們四處可見軌跡曲線的影子。

  演示:這是美麗的城市夜景圖。

  演示:許多人認為天體運行的軌跡都是圓錐曲線,研究表明,天體數(shù)目越多,軌跡種類也越多。

  演示建筑中也有許多美麗的軌跡曲線。

  設計意圖:讓學生感受數(shù)學就在我們身邊,感受軌跡,曲線的動態(tài)美、和諧美、對稱美,激發(fā)學習興趣。

  2、激發(fā)情感,引導探索

  靠在墻角的梯子滑落了,如果梯子上站著一個人,我們不禁會想,這個人是直直的摔下去呢?還是劃了一條優(yōu)美的曲線飛出去呢?我們把這個問題轉(zhuǎn)化為數(shù)學問題就是新教材高二上冊88頁20題,也就是這里的例題1。

高中數(shù)學說課稿 篇8

  【教材分析】

  1、本節(jié)教材的地位與作用

  本節(jié)主要研究閉區(qū)間上的連續(xù)函數(shù)最大值和最小值的求法和實際應用,分兩課時,這里是第一課時,它是在學生已經(jīng)會求某些函數(shù)的最值,并且已經(jīng)掌握了性質(zhì):“如果f(x)是閉區(qū)間[a,b]上的連續(xù)函數(shù),那么f(x)在閉區(qū)間[a,b]上有最大值和最小值”,以及會求可導函數(shù)的極值之后進行學習的,學好這一節(jié),學生將會求更多的函數(shù)的最值,運用本節(jié)知識可以解決科技、經(jīng)濟、社會中的一些如何使成本最低、產(chǎn)量最高、效益最大等實際問題。這節(jié)課集中體現(xiàn)了數(shù)形結(jié)合、理論聯(lián)系實際等重要的數(shù)學思想方法,學好本節(jié),對于進一步完善學生的知識結(jié)構,培養(yǎng)學生用數(shù)學的意識都具有極為重要的意義。

  2、教學重點

  會求閉區(qū)間上連續(xù)開區(qū)間上可導的函數(shù)的最值。

  3、教學難點

  高三年級學生雖然已經(jīng)具有一定的知識基礎,但由于對求函數(shù)極值還不熟練,特別是對優(yōu)化解題過程依據(jù)的理解會有較大的困難,所以這節(jié)課的難點是理解確定函數(shù)最值的方法。

  4、教學關鍵

  本節(jié)課突破難點的關鍵是:理解方程f′(x)=0的解,包含有指定區(qū)間內(nèi)全部可能的極值點。

  【教學目標】

  根據(jù)本節(jié)教材在高中數(shù)學知識體系中的地位和作用,結(jié)合學生已有的認知水平,制定本節(jié)如下的教學目標:

  1、知識和技能目標

 。1)理解函數(shù)的最值與極值的區(qū)別和聯(lián)系。

 。2)進一步明確閉區(qū)間[a,b]上的連續(xù)函數(shù)f(x),在[a,b]上必有最大、最小值。

 。3)掌握用導數(shù)法求上述函數(shù)的最大值與最小值的方法和步驟。

  2、過程和方法目標

 。1)了解開區(qū)間內(nèi)的連續(xù)函數(shù)或閉區(qū)間上的不連續(xù)函數(shù)不一定有最大、最小值。

 。2)理解閉區(qū)間上的連續(xù)函數(shù)最值存在的可能位置:極值點處或區(qū)間端點處。

 。3)會求閉區(qū)間上連續(xù),開區(qū)間內(nèi)可導的函數(shù)的最大、最小值。

  3、情感和價值目標

  (1)認識事物之間的的區(qū)別和聯(lián)系。

 。2)培養(yǎng)學生觀察事物的能力,能夠自己發(fā)現(xiàn)問題,分析問題并最終解決問題。

  (3)提高學生的數(shù)學能力,培養(yǎng)學生的創(chuàng)新精神、實踐能力和理性精神。

  【教法選擇】

  根據(jù)皮亞杰的建構主義認識論,知識是個體在與環(huán)境相互作用的過程中逐漸建構的結(jié)果,而認識則是起源于主客體之間的相互作用。

  本節(jié)課在幫助學生回顧肯定了閉區(qū)間上的連續(xù)函數(shù)一定存在最大值和最小值之后,引導學生通過觀察閉區(qū)間內(nèi)的連續(xù)函數(shù)的幾個圖象,自己歸納、總結(jié)出函數(shù)最大值、最小值存在的可能位置,進而探索出函數(shù)最大值、最小值求解的方法與步驟,并優(yōu)化解題過程,讓學生主動地獲得知識,老師只是進行適當?shù)囊龑,而不進行全部的灌輸。為突出重點,突破難點,這節(jié)課主要選擇以合作探究式教學法組織教學。

  【學法指導】

  對于求函數(shù)的最值,高三學生已經(jīng)具備了良好的知識基礎,剩下的問題就是有沒有一種更一般的方法,能運用于更多更復雜函數(shù)的求最值問題?教學設計中注意激發(fā)起學生強烈的求知欲望,使得他們能積極主動地觀察、分析、歸納,以形成認識,參與到課堂活動中,充分發(fā)揮他們作為認知主體的作用。

  【教學過程】

  本節(jié)課的教學,大致按照“創(chuàng)設情境,鋪墊導入——合作學習,探索新知——指導應用,鼓勵創(chuàng)新——歸納小結(jié),反饋回授”四個環(huán)節(jié)進行組織。

高中數(shù)學說課稿 篇9

  一、教材分析

  1· 教材的地位和作用

  在學習這節(jié)課以前,我們已經(jīng)學習了振幅變換。本節(jié)知識是學習函數(shù)圖象變換綜合應用的基礎,在教材地位上顯得十分重要。

  y=asin(ωx+φ)圖象變換的學習有助于學生進一步理解正弦函數(shù)的圖象和性質(zhì),加深學生對函數(shù)圖象變換的理解和認識,加深數(shù)形結(jié)合在數(shù)學學習中的應用的認識。同時為相關學科的學習打下扎實的基礎。

 、步滩牡闹攸c和難點

  重點是對周期變換、相位變換規(guī)律的理解和應用。

  難點是對周期變換、相位變換先后順序的調(diào)整,對圖象變換的影響。

 、辰滩膬(nèi)容的安排和處理

  函數(shù)y=asin(ωx+φ)圖象這部分內(nèi)容計劃用3課時,本節(jié)是第2課時,主要學習周期變換和相位變換,以及兩種變換的綜合應用。

  二、目的分析

  ⒈知識目標

  掌握相位變換、周期變換的變換規(guī)律。

 、材芰δ繕

  培養(yǎng)學生的觀察能力、動手能力、歸納能力、分析問題解決問題能力。

 、车掠繕

  在教學中努力培養(yǎng)學生的“由簡單到復雜、由特殊到一般”的辯證思想,培養(yǎng)學生的探究能力和協(xié)作學習的能力。

 、辞楦心繕

  通過學數(shù)學,用數(shù)學,進而培養(yǎng)學生對數(shù)學的興趣。

  三、教具使用

 、俦菊n安排在電腦室教學,每個學生都擁有一臺計算機,所有的計算機由一套多媒體演示控制系統(tǒng)連接,以實現(xiàn)師生、生生的相互溝通。

 、谡n前應先把本課所需要的幾何畫板課件通過多媒體演示系統(tǒng)發(fā)送到每一臺學生電腦。

  四、教法、學法分析

  本節(jié)課以“探究——歸納——應用”為主線,通過設置問題情境,引導學生自主探究,總結(jié)規(guī)律,并能應用規(guī)律分析問題、解決問題。

  以學生的自主探究為主要方式,把計算機使用的主動權交給學生,讓學生主動去學習新知、探究未知,在活動中學習數(shù)學、掌握數(shù)學,并能數(shù)學地提出問題、解決問題。

  五、教學過程

  教學過程設計:

  預備知識

  一、問題探究

 、艓熒献魈骄恐芷谧儞Q

  ⑵學生自主探究相位變換

  二、歸納概括

  三、實踐應用

  教學程序

  設計說明

  〖預備知識

  1我們已經(jīng)學習了幾種圖象變換?

  2這些變換的規(guī)律是什么?

  幫助學生鞏固、理解和歸納基礎知識,為后面的學習作鋪墊。促使學生學會對知識的歸納梳理。

  〖問題探究

 。ㄒ唬⿴熒献魈骄恐芷谧儞Q

  (1)自己動手,在幾何畫板中分別觀察①y=sinx→y=sin2x;②y=sinx→y=sin

  x圖象的變換過程,指出變換過程中圖象上每一個點的坐標發(fā)生了什么變化。

  (2) 在上述變換過程中,橫坐標的伸長和縮短與ω之間存在怎樣的關系?

  (二)學生自主探究相位變換

  (1)我們初中學過的由y=f(x)→y=f(x+a)的圖象變換規(guī)律是怎樣的?

  (2) 令f(x)=sinx,則f(x+φ)=sin (x+φ),那么y=sinx→y=sin (x+φ)的變換是不是也符合上述規(guī)律呢?請動手用幾何畫板加以驗證。

  設計這個問題的主要用意是讓學生通過觀察圖象變換的.過程,了解周期變換的基本規(guī)律。

  設計這個問題意圖是引導學生再次認真觀察圖象變換的過程,以便總結(jié)周期變換的規(guī)律。

  師生合作探究已經(jīng)讓學生掌握了探究圖象變換的基本方法,在此基礎上,由學生自主探究相位變換規(guī)律,提高學生的綜合能力。

  〖歸納概括

  通過以上探究,你能否總結(jié)出周期變換和相位變換的一般規(guī)律?

  設計這個環(huán)節(jié)的意圖是通過對上述變換過程的探究,進而引導學生歸納概括,從現(xiàn)象到本質(zhì),總結(jié)出周期變換和相位變換的一般規(guī)律。

  〖實踐應用

 。ㄒ唬⿷门e例

  (1)用五點法作出y=sin(2x+)一個周期內(nèi)的簡圖。

  (2)我們可以通過哪些方法完成y=sinx到y(tǒng)=sin(2x+)的圖象變換

  (3)請動手驗證上述方法,把幾何畫板所得圖象與用五點法作出的簡圖作比較,觀察哪些方法是正確的,哪些方法是錯誤的。

  (4)歸納總結(jié)

  從上述的變換過程中,我們知道若f(x) =sin2x,則f(___)= sin(2x+),由f(x)→f(x+a)的變換規(guī)律得從y=sin2x →y= sin(2x+)的變換應該是_____.

 。ǘ┓謱佑柧

  a組題(基礎題)

  如何完成下列圖象的變換:

  ①y=sin3x→y=sin(3x+1)

 、趛=sin(x+1) →y=sin(3x+1)

  b組題(中等題)

  如何完成下列圖象的變換:

 、賧=sin3x→y=sin(3x+1)

  ②y=sin(x+1) →y=sin(3x+1)

 、踶=sinx →y=sin(3x+1)

  c組題(拓展題)

 、偃绾瓮瓿上铝袌D象的變換:

  y=sinx →y=sin(3x+1)

 、谖覀冎,從f(x)到f(x)+k的變換可通過圖象的上下平移(k>0上移)(k<0下移)|k|個單位得到。那么由y=f(x)→y=af(x)+k的變換中,振幅變換和上下平移變換是不是也有先后順序呢?請通過實例加以驗證。

  讓學生用五點法作出這個圖象是為了驗證變換方法是否正確。

  給出這個問題的用意是開拓學生的思維,讓學生從多角度思考問題。

  這個步驟主要目的是培養(yǎng)學生的探究能力和動手能力。

  這個問題的解決,是突破本課難點的關鍵。通過問題的解決,讓學生理解如果先進行周期變換,而后進行相位變換,應特別關注x的變化量。

  a組題重在基礎知識的掌握,

  由基礎較薄弱的同學完成。

  b組比a組增加了第③小題,

  重在對兩種變換的綜合應用。

  c組除了考查知識的綜合應用,

  還要求學生對新問題進行探究,

  有較大難度,適合基礎較好的

  同學完成。

  作業(yè):

 。1)必做題

  (2)選做題

  作業(yè)分為兩種形式,體現(xiàn)作業(yè)的鞏固性和發(fā)展性原則。選做題不作統(tǒng)一要求,供學有余力的學生課后研究。

  六、評價分析

  在本節(jié)的教與學活動中,始終體現(xiàn)以學生的發(fā)展為本的教育理念。在學生已有的認知基礎上進行設問和引導,關注學生的認知過程,注意學生的品德、思維和心理等方面的發(fā)展。重視動手能力的培養(yǎng),重視問題探究意識和能力的培養(yǎng)。同時,考慮不同學生的個性差異和發(fā)展層次,使不同的學生得到不同的發(fā)展,體現(xiàn)因材施教原則。

  調(diào)節(jié)與反饋:

 、膨炞C兩種變換的綜合時,可能會出現(xiàn)有些學生無法觀察到兩種變換的區(qū)別這種情況,此時,教師除了加以引導外,還需通過教師演示和詳細講解加以解決。

  ⑵教學中可能出現(xiàn)個別學生無法正確操作課件的情況,這種情況下一定要強調(diào)學生的協(xié)作意識。

  附:板書設計

高中數(shù)學說課稿 篇10

  數(shù)學:人教A版必修3第二章第三節(jié)《變量之間的相關關系》說課稿各位老師:

  大家好!我叫***,來自**。我說課的題目是《變量之間的相關關系》,內(nèi)容選自于高中教材新課程人教A版必修3第二章第三節(jié),課時安排為三個課時,本節(jié)課內(nèi)容為第一課時。下面我將從教材分析、教學目標分析、教學方法與手段分析、教學過程分析四大方面來闡述我對這節(jié)課的分析和設計:

  一、教材分析

  1.教材所處的地位和作用

  本章我們所要學習的主要內(nèi)容就是統(tǒng)計,在前面的章節(jié)中我們已經(jīng)對統(tǒng)計的相關知識作了大致的了解。本節(jié)課我們要繼續(xù)探討的是變量之間的相關關系,它為接下來要學習的兩個變量的線性相關打下基礎。這是一個與現(xiàn)實實際生活聯(lián)系很緊密的知識,在教師的引導下,可使學生認識到在現(xiàn)實世界中存在不能用函數(shù)模型描述的變量關系,從而體會研究變量之間的相關關系的重要性.

  2.教學的重點和難點

  重點:①通過收集現(xiàn)實問題中兩個有關聯(lián)變量的數(shù)據(jù)直觀認識變量間的相關關系;

 、诶蒙Ⅻc圖直觀認識兩個變量之間的線性關系;

  難點:①變量之間相關關系的理解;②作散點圖和理解兩個變量的正相關和負相關

  二、教學目標分析

  1.知識與技能目標

  通過收集現(xiàn)實問題中兩個有關聯(lián)變量的數(shù)據(jù)認識變量間的相關關系

  2、過程與方法目標:

  明確事物間的相互聯(lián)系.認識現(xiàn)實生活中變量間除了存在確定的關系外,仍存在大量的非確定性的相關關系,并利用散點圖直觀體會這種相關關系.

  3、情感態(tài)度與價值觀目標:

  通過對事物之間相關關系的了解,讓學生們認識到現(xiàn)實中任何事物都是相互聯(lián)系的辯證法思想。

  三、教學方法與手段分析

  1.教學方法:結(jié)合本節(jié)課的教學內(nèi)容和學生的認知水平,在教法上,我采用“問答探究”式的教學方法,層層深入。充分發(fā)揮教師的主導作用,讓學生真正成為教學活動的主體。

  2。教學手段:通過多媒體輔助教學,充分調(diào)動學生參與課堂教學的主動性與積極性。

  四、教學過程分析

  ㈠問題引出:

  請同學們?nèi)鐚嵦顚懴卤恚ㄔ诳崭裰写颉啊獭保?/p>

  然后回答如下問題:①“你的數(shù)學成績對你的物理成績有無影響?”②“如果你的數(shù)學成績好,那么你的物理成績也不會太差,如果你的數(shù)學成績差,那么你的物理成績也不會太好!睂δ銇碚f,是這樣嗎?同意這種說法的同學請舉手。

  根據(jù)同學們回答的結(jié)果,讓學生討論:我們可以發(fā)現(xiàn)自己的數(shù)學成績和物理成績存在某種關系。(似乎就是數(shù)學好的,物理也好;數(shù)學差的,物理也差,但又不全對。)教師總結(jié)如下:

  物理成績和數(shù)學成績是兩個變量,從經(jīng)驗看,由于物理學習要用到比較多的數(shù)學知識和數(shù)學方法。數(shù)學成績的高低對物理成績的高低是有一定影響的。但決非唯一因素,還

  有其它因素,如圖所示(幻燈片給出):

  因此,不能通過一個人的數(shù)學成績是多少就準確地斷定他的物理成績能達到多少。但這兩個變量是有一定關系的,它們之間是一種不確定性的關系。如何通過數(shù)學成績的結(jié)果對物理成績進行合理估計有非常重要的現(xiàn)實意義。

  「設計意圖」通過對身邊事例的分析,引出我們今天將要學習的主要內(nèi)容,由此可以激起學

  生們的學習興趣,為接下來的學習打下良好的基礎。

 、嫣骄啃轮

 、备拍钚纬

  教師提問:“像剛才這種情況在現(xiàn)實生活中是否還有?”學生們思考之后,請幾位同學就提出的問題作出回答。老師就舉出的例子,引導學生作出分析,然后由老師總結(jié)得出相關關系的概念。[兩個變量之間的關系可能是確定的關系(如:函數(shù)關系),或非確定性關系。當自變量取值一定時,因變量也確定,則為確定關系;當自變量取值一定時,因變量帶有隨機性,這種變量之間的關系稱為相關關系。相關關系是一種非確定性關系。]

  「設計意圖」從現(xiàn)實生活入手,抓住學生們的注意力,引導學生分析得出概念,讓學生真正參與到概念的形成過程中來。

 、蔡骄烤性相關關系和其他相關關系

  「課件展示」

  例1在一次對人體脂肪和年齡關系的研究中,研究人員獲得了一組樣本數(shù)據(jù):

  問題:針對于上述數(shù)據(jù)所提供的信息,你認為人體的脂肪含量與年齡之間有怎樣的關系?

  [教師特別向?qū)W生強調(diào)在研究兩個變量之間是否存在某種關系時,必須從散點圖入手(向?qū)W生介紹什么是散點圖)。并且引導學生從散點圖上可以得出如下規(guī)律:(幻燈片給出)

 、偃绻械臉颖军c都落在某一函數(shù)曲線上,那么變量之間具有函數(shù)關系(確定性關系);②如果所有的樣本點都落在某一函數(shù)曲線的附近,那么變量之間具有相關關系(不確定性關系);③如果所有的樣本點都落在某一直線附近,那么變量之間具有線性相關關系(不確定性關系)。

  「設計意圖」通過對這個典型事例的分析,向?qū)W生們介紹什么是散點圖,并總結(jié)出如何從散點圖上判斷變量之間關系的規(guī)律。

  下面我們用TI圖形計算器作出這兩個變量的散點圖。

  學生實驗:先把數(shù)據(jù)中成對出現(xiàn)的兩個數(shù)分別作為橫坐標、縱坐標,把數(shù)據(jù)輸入到表格當中(第一列橫坐標、第二列縱坐標);然后,用TI圖形計算器作散點圖:

  [引導學生觀察作出的散點圖,體會現(xiàn)實生活中兩個變量之間的關系存在著不確定性。散點圖中的散點并不在一條直線上,只是分布在一條直線的周圍,即為線性相關關系。]

  「設計意圖」通過實驗讓學生們感受散點圖的主要形成過程,并由此引出線性相關關系。為后面回歸直線和回歸直線方程的學習做好鋪墊。

  「課件展示」四組數(shù)據(jù),請學生作出散點圖,并觀察每組數(shù)據(jù)的特點。

  根據(jù)四組數(shù)據(jù),學生作出四個散點圖。

  通過學生討論、交流、用TI圖形計算器展示、對比自己作出的散點圖,我們引出線性相關關系,正負相關關系的概念。

  「設計意圖」及時鞏固知識,學生通過親自動手作散點圖,并交流討論,進一步加深對散點圖的理解,并由此引出正負相關關系的概念,突破難點。

 、缋}講解,深化認識

  「課件展示」

  例2一般說來,一個人的身高越高,他的人就越大,相應地,他的右手一拃長就越長,因此,人的身高與右手一拃長之間存在著一定的關系。為了對這個問題進行調(diào)查,我們收集了北京市某中學20xx年高三年級96名學生的身高與右手一拃長的數(shù)據(jù)如下表。

  (1)根據(jù)上表中的數(shù)據(jù),制成散點圖。你能從散點圖中發(fā)現(xiàn)身高與右手一拃長之間的近似關系嗎?

 。2)如果近似成線性關系,請畫出一條直線來近似地表示這種線性關系。

 。3)如果一個學生的身高是188cm,你能估計他的一拃大概有多長嗎?

  「設計意圖」這個例子很容易激起學生們的學習興趣,由此可達到更好的教學效果。通過對這道題的解答,使對前面知識的認識更加牢固。

 、璺此夹〗Y(jié)、培養(yǎng)能力

 、抛兞块g相關關系、線性關系和正負相關關系

  ⑵如何做散點圖

  「設計意圖」小節(jié)是一堂課的概括和總結(jié),有利于優(yōu)化學生的認知結(jié)構,把課堂教學傳授的知識較快轉(zhuǎn)化為學生的素質(zhì),也更進一步培養(yǎng)學生的歸納概括能力

  ㈤課后作業(yè),自主學習

  習題2.31、2

  [設計意圖]課后作業(yè)的布置是為了檢驗學生對本節(jié)課內(nèi)容的理解和運用程度,并促使學生進一步鞏固和掌握所學內(nèi)容。

【實用的高中數(shù)學說課稿模板匯總十篇】相關文章:

實用的高中數(shù)學說課稿模板匯編十篇08-17

實用的高中數(shù)學說課稿模板匯總8篇08-01

實用的高中數(shù)學說課稿范文匯總十篇08-20

實用的高中數(shù)學說課稿匯編十篇08-01

實用的高中數(shù)學說課稿匯總八篇07-31

實用的高中數(shù)學說課稿匯總7篇07-28

實用的高中數(shù)學說課稿匯總六篇07-24

實用的高中數(shù)學說課稿模板9篇07-29

實用的高中數(shù)學說課稿模板8篇07-28