亚洲国产日韩欧美在线a乱码,国产精品路线1路线2路线,亚洲视频一区,精品国产自,www狠狠,国产情侣激情在线视频免费看,亚洲成年网站在线观看

高中數(shù)學(xué)說課稿

時間:2021-08-17 18:35:04 高中說課稿 我要投稿

關(guān)于高中數(shù)學(xué)說課稿范文集合十篇

  作為一名教學(xué)工作者,總不可避免地需要編寫說課稿,說課稿有助于教學(xué)取得成功、提高教學(xué)質(zhì)量。那么什么樣的說課稿才是好的呢?下面是小編為大家整理的高中數(shù)學(xué)說課稿10篇,希望能夠幫助到大家。

關(guān)于高中數(shù)學(xué)說課稿范文集合十篇

高中數(shù)學(xué)說課稿 篇1

  一、說教材

 。1)說教材的內(nèi)容和地位

  本次說課的內(nèi)容是人教版高一數(shù)學(xué)必修一第一單元第一節(jié)《集合》(第一課時)。集合這一課里,首先從初中代數(shù)與幾何涉及的集合實例入手,引出集合與集合的元素的概念,并且結(jié)合實例對集合的概念作了說明。然后,介紹了集合的常用表示方法,集合元素的特征以及常用集合的表示。把集合的初步知識安排在高中數(shù)學(xué)的最開始,是因為在高中數(shù)學(xué)中,這些知識與其他內(nèi)容有著密切聯(lián)系,它們是學(xué)習(xí)、掌握以及使用數(shù)學(xué)語言的基礎(chǔ)。從知識結(jié)構(gòu)上來說是為了引入函數(shù)的定義。因此在高中數(shù)學(xué)的模塊中,集合就顯得格外的舉足輕重了。

 。2)說教學(xué)目標

  根據(jù)教材結(jié)構(gòu)和內(nèi)容以及教材地位和作用,考慮到學(xué)生已有的認知結(jié)構(gòu)與心理特征,依據(jù)新課標制定如下教學(xué)目標:

  1.知識與技能:掌握集合的基本概念及表示方法。了解"屬于"關(guān)系的意義,掌握集合元素的特征。

  2.過程與方法:通過情景設(shè)置提出問題,揭示課題,培養(yǎng)學(xué)生主動探究新知的習(xí)慣。并通過"自主、合作與探究"實現(xiàn)"一切以學(xué)生為中心"的理念。

  3.情感態(tài)度與價值觀:感受數(shù)學(xué)的人文價值,提高學(xué)生的學(xué)習(xí)數(shù)學(xué)的興趣,由集合的學(xué)習(xí)感受數(shù)學(xué)的簡潔美與和諧統(tǒng)一美。同時通過自主探究領(lǐng)略獲取新知識的喜悅。

  (3)說教學(xué)重點和難點

  依據(jù)課程標準和學(xué)生實際,我確定本課的教學(xué)重點為

  教學(xué)重點:集合的基本概念及元素特征。

  教學(xué)難點:掌握集合元素的三個特征,體會元素與集合的屬于關(guān)系。

  二、說教法和學(xué)法

  接下來則是說教法、學(xué)法

  教法與學(xué)法是互相聯(lián)系和統(tǒng)一的,不能孤立去研究。什么樣的教法必帶來相應(yīng)的學(xué)法,以遵循啟發(fā)性原則為出發(fā)點,就本節(jié)課而言,我采用"生活實例與數(shù)學(xué)實例"相結(jié)合,"師生互動與課堂布白"相輔助的方法。通過不同層次的練習(xí)體驗,憑借有趣、實用的教學(xué)手段,突出重點,突破難點。然而,學(xué)生是學(xué)習(xí)的主人,以學(xué)生為主體,創(chuàng)造條件讓學(xué)生參與探究活動,()不僅提高了學(xué)生探究能力,更讓學(xué)生獲得學(xué)習(xí)的技能和激發(fā)學(xué)生的學(xué)習(xí)興趣。因此,本次活動采用的學(xué)法有自主探究、觀察發(fā)現(xiàn)、合作交流、歸納總結(jié)等。

  總之,不管采取什么教法和學(xué)法,每節(jié)課都應(yīng)不斷研究學(xué)生的學(xué)習(xí)心理機制,不斷優(yōu)化教師本身的教學(xué)行為,自始至終以學(xué)生為主體,為學(xué)生創(chuàng)造和諧的課堂氛圍。

  三、說教學(xué)過程

  接著我來說一下最重要的部分,本節(jié)課的教學(xué)過程:

  這節(jié)課的流程主要分為六個環(huán)節(jié):創(chuàng)設(shè)情境(引入目標)、自主探究(感知目標)、討論辨析(理解目標)、變式訓(xùn)練(鞏固目標)、課堂小結(jié)(自我評價)、作業(yè)布置(反饋矯正)。上述六個環(huán)節(jié)由淺入深,層層遞進。 多層次、多角度地加深對概念的理解。 提高學(xué)生學(xué)習(xí)的興趣,以達到良好的教學(xué)效果。

  第一環(huán)節(jié):創(chuàng)設(shè)問題情境,引入目標

  課堂開始我將提出兩個問題:

  問題1:班級有20名男生,16名女生,問班級一共多少人?

  問題2:某次運動會上,班級有20人參加田賽,16人參加徑賽,問一共多少人參加比賽?

  這里我會讓學(xué)生以小組討論的形式進行討論問題,事實上小組合作的形式是本節(jié)課主要形式。

  待學(xué)生討論完畢以后我將作歸納總結(jié):問題2已無法用學(xué)過的知識加以解釋,這是與集合有關(guān)的問題,因此需用集合的語言加以描述(同時我將板書標題:集合)。

  安排這一過程的意圖是為了從實際問題引入,讓學(xué)生了解數(shù)學(xué)來源于實際。從而激發(fā)學(xué)生參與課堂學(xué)習(xí)的欲望。

  很自然地進入到第二環(huán)節(jié):自主探究

  讓學(xué)生閱讀教材,并思考下列問題:

 。1)有那些概念?

  (2)有那些符號?

  (3)集合中元素的特性是什么?

  安排這一過程的意圖是給學(xué)生提供活動空間,讓主體主動建構(gòu)自己的知識結(jié)構(gòu)。培養(yǎng)學(xué)生的探究能力。

  讓學(xué)生自主探究之后將進入第三環(huán)節(jié):討論辨析

  小組合作探究(1)

  讓學(xué)生觀察下列實例

 。1)1~20以內(nèi)的所有質(zhì)數(shù);

 。2)所有的正方形;

 。3)到直線 的距離等于定長 的所有的點;

 。4)方程 的所有實數(shù)根;

  通過以上實例,辨析概念:

  (1)集合含義:一般地,某些指定的對象集在一起就成為一個集合,也簡稱集。而集合中的每個對象叫做這個集合的元素。

 。2)表示方法:集合通常用大括號{ }或大寫的拉丁字母A,B,C…表示,而元素用小寫的拉丁字母a,b,c…表示。

  小組合作探究(2)——集合元素的特征

  問題3:任意一組對象是否都能組成一個集合?集合中的元素有什么特征?

  問題4:某單位所有的"帥哥"能否構(gòu)成一個集合?由此說明什么?

  集合中的元素必須是確定的

  問題5:在一個給定的集合中能否有相同的元素?由此說明什么?

  集合中的元素是不重復(fù)出現(xiàn)的

  問題6:咱班的全體同學(xué)組成一個集合,調(diào)整座位后這個集合有沒有變化?由此說明什么? 集合中的元素是沒有順序的

  我如此設(shè)計的意圖是因為:問題是數(shù)學(xué)的心臟,感受問題是學(xué)習(xí)數(shù)學(xué)的根本動力。

  小組合作探究(3)——元素與集合的關(guān)系

  問題7:設(shè)集合A表示"1~20以內(nèi)的所有質(zhì)數(shù)",那么3,4,5,6這四個元素哪些在集合A中?哪些不在集合A中?

  問題8:如果元素a是集合A中的元素,我們?nèi)绾斡脭?shù)學(xué)化的語言表達?

  a屬于集合A,記作a∈A

  問題9:如果元素a不是集合A中的元素,我們?nèi)绾斡脭?shù)學(xué)化的語言表達?

  a不屬于集合A,記作aA

  小組合作探究(4)——常用數(shù)集及其表示方法

  問題10:自然數(shù)集,正整數(shù)集,整數(shù)集,有理數(shù)集,實數(shù)集等一些常用數(shù)集,分別用什么符號表示?

  自然數(shù)集(非負整數(shù)集):記作 N

  正整數(shù)集:

  整數(shù)集:記作 Z

  有理數(shù)集:記作 Q 實數(shù)集:記作 R

  設(shè)計意圖:由于不同的人對同一問題有不同的體驗和理解。讓學(xué)生通過合作交流相互得到啟發(fā),從而不斷完善自己的知識結(jié)構(gòu)。

  第四環(huán)節(jié):理論遷移 變式訓(xùn)練

  1.下列指定的對象,能構(gòu)成一個集合的是

 、 很小的數(shù)

 、 不超過30的非負實數(shù)

 、 直角坐標平面內(nèi)橫坐標與縱坐標相等的點

 、 π的近似值

 、 所有無理數(shù)

  A、②③④⑤ B、①②③⑤ C、②③⑤ D、②③④

  第五環(huán)節(jié):課堂小結(jié),自我評價

  1.這節(jié)課學(xué)習(xí)的主要內(nèi)容是什么?

  2.這節(jié)課主要解釋了什么數(shù)學(xué)思想?

  設(shè)計意圖:引導(dǎo)學(xué)生對所學(xué)知識、思想方法進行小結(jié),形成知識系統(tǒng)。教師用激勵性的語言加一點評,讓學(xué)生的思想敞亮的發(fā)揮出來。

  第六環(huán)節(jié):作業(yè)布置,反饋矯正

  1.必做題 課本習(xí)題1.1—1、2、3.

  2.選做題 已知集合A={a+2,(a+1)2,a2+3a+3},且1∈A,求實數(shù)a 的值。

  設(shè)計意圖:充分考慮到學(xué)生的差異性,讓所有學(xué)生都有成功的情感體驗。

  四、板書設(shè)計

  好的板書就像一份微型教案,為了讓學(xué)生直觀易懂的看筆記,板書應(yīng)設(shè)計得有條理性、概括性、指導(dǎo)性,所以我設(shè)計的板書如下:

  集 合

  1.集合的概念

  2.集合元素的特征

 。▽W(xué)生板演)

  3.常見集合的表示

  4.范例研究

高中數(shù)學(xué)說課稿 篇2

  一、教材分析:

  "數(shù)列"是中學(xué)數(shù)學(xué)的重要內(nèi)容之一。不僅在歷年的高考中占有一定的比重,而且在實際生活中也經(jīng)常要用到數(shù)列的一些知識。例如:儲蓄、分期付款中的有關(guān)計算就要用到數(shù)列知識。

  就本節(jié)課而言,在給出數(shù)列的基本概念之后,結(jié)合例題,指出數(shù)列可以看作定義域為正整數(shù)集(或它的有限子集)的函數(shù)。因此,本節(jié)課的內(nèi)容,一方面是前面函數(shù)知識的延伸及應(yīng)用,可以使學(xué)生加深對函數(shù)概念的理解;另一方面也可以為后面學(xué)習(xí)等差數(shù)列、等比數(shù)列的通項、求和等知識打下鋪墊。所以本節(jié)課在教材中起到了"承上啟下"的作用,必須講清、講透。

  二、教學(xué)目標:

  根據(jù)上面對教材的分析,并結(jié)合學(xué)生的認知水平和思維特點,確定本節(jié)課的教學(xué)目標。

  1、知識目標:

 。1)形成并掌握數(shù)列及其有關(guān)概念,識記數(shù)列的表示和分類,了解數(shù)列通項公式的意義。

  (2)理解數(shù)列的通項公式,能根據(jù)數(shù)列的通項公式寫出數(shù)列的任意一項。對比較簡單的數(shù)列,使學(xué)生能根據(jù)數(shù)列的前幾項觀察歸納出數(shù)列的通項公式,并通過數(shù)列與函數(shù)的比較加深對數(shù)列的認識。

  2、能力目標:

  培養(yǎng)學(xué)生觀察、歸納、類比、聯(lián)想等分析問題的能力,同時加深理解數(shù)學(xué)知識之間相互滲透性的思想。

  3、情感目標:

  通過滲透函數(shù)、方程思想,培養(yǎng)學(xué)生的思維能力,使學(xué)生在民主、和諧的活動中感受學(xué)習(xí)的樂趣。通過介紹數(shù)列與函數(shù)間存在的特殊到一般關(guān)系,向?qū)W生進行辯證唯物主義思想教育。

  三、重點、難點:

  1、教學(xué)重點

  理解數(shù)列的概念及其通項公式,加強與函數(shù)的聯(lián)系,并能根據(jù)通項公式寫出數(shù)列中的任意一項。

  2、教學(xué)難點

  根據(jù)數(shù)列前幾項的特點,通過多角度、多層次的觀察和分析,歸納出數(shù)列的通項公式。

  四、教法學(xué)法

  本節(jié)課以"問題情境——歸納抽象——鞏固訓(xùn)練"的模式展開,引導(dǎo)學(xué)生從知識和生活經(jīng)驗出發(fā),提出問題并與學(xué)生共同探索、討論解決問題的方法,讓學(xué)生經(jīng)歷知識的形成過程,從而理解更加透徹。

  現(xiàn)代教學(xué)觀明確指出:教師是主導(dǎo),學(xué)生是主體,學(xué)生應(yīng)成為學(xué)習(xí)的主人。根據(jù)本節(jié)內(nèi)容及學(xué)生的認知規(guī)律,針對不同內(nèi)容應(yīng)選擇不同的方法。對于國際象棋棋盤麥粒采用電腦動畫演示,增強感性認識;所舉的引例及數(shù)列的函數(shù)定義,可采用探索發(fā)現(xiàn)法;對通項公式及數(shù)列的分類等概念采用指導(dǎo)閱讀法;對于難題(根據(jù)數(shù)列的前幾項寫出一個通項公式)采用講練結(jié)合法。

  "授人以魚,不如授人以漁",平時在教學(xué)中教師應(yīng)不斷指導(dǎo)學(xué)生學(xué)會學(xué)習(xí)。本節(jié)課從學(xué)生實際出發(fā),創(chuàng)設(shè)情境,引導(dǎo)學(xué)生觀察、分析,探索發(fā)現(xiàn),歸納總結(jié),培養(yǎng)學(xué)生積極思維的品質(zhì),加強主動學(xué)習(xí)的能力。

  為了有效地突出重點,突破難點,增大課堂容量,提高課堂效率,本節(jié)課將常規(guī)教學(xué)手段與現(xiàn)代教學(xué)手段相結(jié)合,將引例、例題、練習(xí)等實物投影。

  五、教學(xué)過程

  1、創(chuàng)設(shè)情景,激發(fā)興趣,引入新課

 。1)電腦動畫演示:國際象棋棋盤格子中放有麥粒的示意圖,從而得到一組數(shù):1,2,22,23……263

  敘述故事:給你一張報紙,你可以用它登上月球,你相信嗎?只要不斷地將報紙對折42次以后,報紙的厚度就可以達到月球和地球的距離。

  設(shè)計意圖:以實例引入概念,再配以電腦動畫,敘述小故事,增強了感性認識,調(diào)動學(xué)生學(xué)習(xí)新知識的積極性。

 。2)投影演示,再觀察以下幾列數(shù):

 、倌嘲鄬W(xué)生的學(xué)號:1,2,3,4……,50

 、趶1984年到20xx年,中國體育健兒參加奧運會每屆所得的金牌數(shù):

  15,5,16,16,28,32

 、勰炒位顒樱1km長的路段,從起點開始,每隔10m放置一個垃圾筒,由近及遠各筒與起點的距離排成一列數(shù):0.10.20.30,……1000

 、芊派湫晕镔|(zhì)衰變,設(shè)原質(zhì)量為1,則各年的剩留量依次為:1,0.84,0.842,0.843,……

  2、歸納抽象,形成概念

 。1)學(xué)生嘗試敘述數(shù)列的定義:啟發(fā)學(xué)生觀察上述幾組數(shù)據(jù)后,進行歸納總結(jié)定義:按一定次序排成的一列數(shù),叫數(shù)列,便于培養(yǎng)學(xué)生的抽象概括能力。

  舉例1:1,3,5,7與7,5,3,1 這兩個數(shù)列有何區(qū)別?

  舉例2:-1,1,-1,1,……是不是一個數(shù)列?

  設(shè)計意圖:使學(xué)生注意把數(shù)列中的數(shù)和集合中的元素區(qū)分開來:

 、贁(shù)列中的數(shù)是有順序的,而集合中的元素是無序的。

  ②數(shù)列中的數(shù)可以重復(fù)出現(xiàn),而集中的元素不能重復(fù)出現(xiàn)。

  進一步加深學(xué)生對數(shù)列定義的理解。

  (2)數(shù)列的項及項的表示方法: an

 。3)數(shù)列的表示方法:可寫成:a1,a2,a3,……,an……

  或簡記為:{an},注意an與{an}的區(qū)別

  上述(2)(3)采用指導(dǎo)閱讀法(書P106頁第7節(jié)~第8節(jié)第一句話),對an與{an}的區(qū)別進行集體討論歸納。

  3、通項公式的探索

 。1)觀察歸納定義

  由學(xué)生觀察引例中數(shù)列的項與它在數(shù)列中的位置(即項的序號)間的關(guān)系:

  實物投影:

  序號 1 2 3 …… 64

  ↓ ↓ ↓ ↓

  項 1= 21-1 2=22-1 22 = 23-1 …… 263

  從而可看出項與項的序號之間可用一個公式:an =2n-1表示,該公式叫數(shù)列的通項公式,然后歸納抽象出數(shù)列的通項公式的定義(略)。

  (2)用函數(shù)觀點看待數(shù)列:這是一個難點,講解必須清楚、透徹。數(shù)列可看作是以自然數(shù)集或它的有限子集為定義域的函數(shù),當(dāng)自變量由小到大依次取值時對應(yīng)的一列函數(shù)值(這是數(shù)列的本質(zhì)),其圖象是一群孤立的點,畫圖(棋盤麥粒這個數(shù)列)

  設(shè)計意圖:加深對函數(shù)概念的理解。

 。3)數(shù)列的分類,并口答引例及數(shù)列①②③④分別歸于哪類數(shù)列。

  4、講解例題

  設(shè)計例題:①根據(jù)通項公式寫出前幾項并會判斷某個數(shù)是否為該數(shù)列中的項;②根據(jù)數(shù)列的前幾項寫出一個通項公式。

  例1,根據(jù)下列數(shù)列{an}的通項公式,寫出它的前5項

 。1) an= n/(n+1) (2)an=(-1)n · n

  設(shè)計意圖:使學(xué)生正確掌握通項與序號的關(guān)系。

  變式訓(xùn)練:問 2589/2590是否為數(shù)列(1)中的項

  設(shè)計意圖:使學(xué)生明確方程思想是解決數(shù)列問題的重要方法。

  例2,寫出下列數(shù)列的一個通項公式,使它的前4項分別是下列各數(shù):

  (1)1,3,5,7

 。2)2, -2,2 ,-2

 。3)1 ,11 ,111 ,

  設(shè)計意圖:引導(dǎo)學(xué)生進行解題后反思,對完善學(xué)生的認知結(jié)構(gòu)是十分必要。寫通項公式時,就是要去發(fā)現(xiàn)an與n的關(guān)系,對各項進行多角度、多層次觀察,找出這些項與相應(yīng)的項數(shù)(即序號)之間的對應(yīng)關(guān)系。(注:遇到分數(shù),可分別觀察分子組的數(shù)列特征與分母組成的數(shù)列特征;若為正負相間的項,則可用-1的奇次冪或偶次冪進行符號交換,有時也可根據(jù)相鄰的項,適當(dāng)調(diào)整有關(guān)的表達式。)

  5、練習(xí)鞏固

  投影演示:

  (1)寫出數(shù)列1,-1,1,-1,……的一個通項公式

 。2)是否所有數(shù)列都有通項公式?

  上述(1)的設(shè)計意圖:an=(-1)n+1也可寫成 (分段函數(shù)的形式)(當(dāng)n為奇數(shù)時,n為偶數(shù)時),說明根據(jù)數(shù)列的前幾項寫出的通項公式可能不唯一。(2):引例②就沒有通項公式。通過這些練習(xí),使學(xué)生能及時消化,及時鞏固所學(xué)內(nèi)容。

  6、歸納小結(jié)

  由學(xué)生試著總結(jié)本節(jié)課所學(xué)內(nèi)容,老師適當(dāng)補充,可以訓(xùn)練學(xué)生的收斂思維,有助于完善學(xué)生的思維結(jié)構(gòu)。

 。1) 數(shù)列及有關(guān)概念。

  (2) 根據(jù)數(shù)列的通項公式求任意一項,并能判斷某數(shù)是否為該數(shù)列中的項。

 。3) 根據(jù)數(shù)列的前幾項寫出數(shù)列的一個通項公式。

 。4) 數(shù)列與函數(shù)的關(guān)系

  7、課后作業(yè):

 。1)課本P110/習(xí)題3.1/1(3)(4)(5);2、書P108/4(1)(3)(4)

 。2)復(fù)習(xí)看書P106-107

  六、評價與分析

  本節(jié)課,教師可通過創(chuàng)設(shè)情景,適時引導(dǎo)的方式來激發(fā)學(xué)生積極思考的欲望,有時直接講解,有時組織掌握學(xué)生集體討論、探索發(fā)現(xiàn),課堂上除反復(fù)強調(diào)注意點外,還應(yīng)通過課堂練習(xí)和課后作業(yè)來強化它們。

  通過本節(jié)課的學(xué)習(xí),學(xué)生不僅掌握了數(shù)列及有關(guān)概念,而且可體會到數(shù)學(xué)概念形成過程中蘊含的基本數(shù)學(xué)思想:"函數(shù)思想、數(shù)形結(jié)合思想、特殊化思想",使之獲得內(nèi)心感受,提高了基本技能和解決問題的能力,也可以逐漸學(xué)會辯證地看待問題。

高中數(shù)學(xué)說課稿 篇3

  【一】教學(xué)背景分析

  1。教材結(jié)構(gòu)分析

  《圓的方程》安排在高中數(shù)學(xué)第二冊(上)第七章第六節(jié)。圓作為常見的簡單幾何圖形,在實際生活和生產(chǎn)實踐中有著廣泛的應(yīng)用。圓的方程屬于解析幾何學(xué)的基礎(chǔ)知識,是研究二次曲線的開始,對后續(xù)直線與圓的位置關(guān)系、圓錐曲線等內(nèi)容的學(xué)習(xí),無論在知識上還是方法上都有著積極的意義,所以本節(jié)內(nèi)容在整個解析幾何中起著承前啟后的作用。

  2。學(xué)情分析

  圓的方程是學(xué)生在初中學(xué)習(xí)了圓的概念和基本性質(zhì)后,又掌握了求曲線方程的一般方法的基礎(chǔ)上進行研究的。但由于學(xué)生學(xué)習(xí)解析幾何的時間還不長、學(xué)習(xí)程度較淺,且對坐標法的運用還不夠熟練,在學(xué)習(xí)過程中難免會出現(xiàn)困難。另外學(xué)生在探究問題的能力,合作交流的意識等方面有待加強。

  根據(jù)上述教材結(jié)構(gòu)與內(nèi)容分析,考慮到學(xué)生已有的認知結(jié)構(gòu)和心理特征,我制定如下教學(xué)目標:

  3。教學(xué)目標

 。1) 知識目標:①掌握圓的標準方程;

 、跁蓤A的標準方程寫出圓的半徑和圓心坐標,能根據(jù)條件寫出圓的標準方程;

 、劾脠A的標準方程解決簡單的實際問題。

 。2) 能力目標:①進一步培養(yǎng)學(xué)生用代數(shù)方法研究幾何問題的能力;

 、诩由顚(shù)形結(jié)合思想的理解和加強對待定系數(shù)法的運用;

 、墼鰪妼W(xué)生用數(shù)學(xué)的意識。

 。3) 情感目標:①培養(yǎng)學(xué)生主動探究知識、合作交流的意識;

 、谠隗w驗數(shù)學(xué)美的過程中激發(fā)學(xué)生的學(xué)習(xí)興趣。

  根據(jù)以上對教材、教學(xué)目標及學(xué)情的分析,我確定如下的教學(xué)重點和難點:

  4。 教學(xué)重點與難點

 。1)重點:圓的標準方程的求法及其應(yīng)用。

 。2)難點: ①會根據(jù)不同的已知條件求圓的標準方程;

 、谶x擇恰當(dāng)?shù)淖鴺讼到鉀Q與圓有關(guān)的實際問題。

  為使學(xué)生能達到本節(jié)設(shè)定的教學(xué)目標,我再從教法和學(xué)法上進行分析:

  好學(xué)教育:

  【二】教法學(xué)法分析

  1。教法分析 為了充分調(diào)動學(xué)生學(xué)習(xí)的積極性,本節(jié)課采用“啟發(fā)式”問題教學(xué)法,用環(huán)環(huán)相扣的問題將探究活動層層深入,使教師總是站在學(xué)生思維的最近發(fā)展區(qū)上。另外我恰當(dāng)?shù)睦枚嗝襟w課件進行輔助教學(xué),借助信息技術(shù)創(chuàng)設(shè)實際問題的情境既能激發(fā)學(xué)生的學(xué)習(xí)興趣,又直觀的引導(dǎo)了學(xué)生建模的過程。

  2。學(xué)法分析 通過推導(dǎo)圓的標準方程,加深對用坐標法求軌跡方程的理解。通過求圓的標準方程,理解必須具備三個獨立的條件才可以確定一個圓。通過應(yīng)用圓的標準方程,熟悉用待定系數(shù)法求的過程。 下面我就對具體的教學(xué)過程和設(shè)計加以說明:

  【三】教學(xué)過程與設(shè)計

  整個教學(xué)過程是由七個問題組成的問題鏈驅(qū)動的,共分為五個環(huán)節(jié):

  創(chuàng)設(shè)情境 啟迪思維 深入探究 獲得新知 應(yīng)用舉例 鞏固提高

  反饋訓(xùn)練 形成方法 小結(jié)反思 拓展引申

  下面我從縱橫兩方面敘述我的教學(xué)程序與設(shè)計意圖。

  首先:縱向敘述教學(xué)過程

 。ㄒ唬﹦(chuàng)設(shè)情境——啟迪思維

  問題一 已知隧道的截面是半徑為4m的半圓,車輛只能在道路中心線一側(cè)行駛,一輛寬為2。7m,高為3m的貨車能不能駛?cè)脒@個隧道?

  通過對這個實際問題的探究,把學(xué)生的思維由用勾股定理求線段CD的長度轉(zhuǎn)移為用曲線的方程來解決。一方面幫助學(xué)生回顧了舊知——求軌跡方程的一般方法,另一方面,在得到汽車不能通過的結(jié)論的同時學(xué)生自己推導(dǎo)出了圓心在原點,半徑為4的圓的標準方程,從而很自然的進入了本課的主題。用實際問題創(chuàng)設(shè)問題情境,讓學(xué)生感受到問題來源于實際,應(yīng)用于實際,激發(fā)了學(xué)生的學(xué)習(xí)興趣和學(xué)習(xí)欲望。這樣獲取的知識,不但易于保持,而且易于遷移。

  通過對問題一的探究,抓住了學(xué)生的注意力,把學(xué)生的思維引到用坐標法研究圓的方程上來,此時再把問題深入,進入第二環(huán)節(jié)。

  (二)深入探究——獲得新知

  問題二 1。根據(jù)問題一的探究能不能得到圓心在原點,半徑為的圓的方程?

  2。如果圓心在,半徑為時又如何呢?

  好學(xué)教育:

  這一環(huán)節(jié)我首先讓學(xué)生對問題一進行歸納,得到圓心在原點,半徑為4的圓的標準方程后,引導(dǎo)學(xué)生歸納出圓心在原點,半徑為r的圓的標準方程。然后再讓學(xué)生對圓心不在原點的情況進行探究。我預(yù)設(shè)了三種方法等待著學(xué)生的探究結(jié)果,分別是:坐標法、圖形變換法、向量平移法。

  得到圓的標準方程后,我設(shè)計了由淺入深的三個應(yīng)用平臺,進入第三環(huán)節(jié)。

  (三)應(yīng)用舉例——鞏固提高

  I。直接應(yīng)用 內(nèi)化新知

  問題三 1。寫出下列各圓的標準方程:

 。1)圓心在原點,半徑為3;

 。2)經(jīng)過點,圓心在點。

  2。寫出圓的圓心坐標和半徑。

  我設(shè)計了兩個小問題,第一題是直接或間接的給出圓心坐標和半徑求圓的標準方程,第二題是給出圓的標準方程求圓心坐標和半徑,這兩題比較簡單,可以安排學(xué)生口答完成,目的是先讓學(xué)生熟練掌握圓心坐標、半徑與圓的標準方程之間的關(guān)系,為后面探究圓的切線問題作準備。

  II。靈活應(yīng)用 提升能力

  問題四 1。求以點為圓心,并且和直線相切的圓的方程。

  2。求過點,圓心在直線上且與軸相切的圓的方程。

  3。已知圓的方程為,求過圓上一點的切線方程。

  你能歸納出具有一般性的結(jié)論嗎?

  已知圓的方程是,經(jīng)過圓上一點的切線的方程是什么?

  我設(shè)計了三個小問題,第一個小題有了剛剛解決問題三的基礎(chǔ),學(xué)生會很快求出半徑,根據(jù)圓心坐標寫出圓的標準方程。第二個小題有些困難,需要引導(dǎo)學(xué)生應(yīng)用待定系數(shù)法確定圓心坐標和半徑再求解,從而理解必須具備三個獨立的條件才可以確定一個圓。第三個小題解決方法較多,我預(yù)設(shè)了四種方法再一次為學(xué)生的發(fā)散思維創(chuàng)設(shè)了空間。最后我讓學(xué)生由第三小題的結(jié)論進行歸納、猜想,在論證經(jīng)過圓上一點圓的切線方程的過程中,又一次模擬了真理發(fā)現(xiàn)的過程,使探究氣氛達到高潮。

  III。實際應(yīng)用 回歸自然

  問題五 如圖是某圓拱橋的一孔圓拱的示意圖,該圓拱跨度AB=20m,拱高OP=4m,在建造時每隔4m需用一個支柱支撐,求支柱的長度(精確到0。01m)。

  好學(xué)教育:

  我選用了教材的例3,它是待定系數(shù)法求出圓的三個參數(shù)的又一次應(yīng)用,同時也與引例相呼應(yīng),使學(xué)生形成解決實際問題的一般方法,培養(yǎng)了學(xué)生建模的習(xí)慣和用數(shù)學(xué)的意識。

 。ㄋ模┓答佊(xùn)練——形成方法

  問題六 1。求過原點和點,且圓心在直線上的圓的標準方程。

  2。求圓過點的切線方程。

  3。求圓過點的切線方程。

  接下來是第四環(huán)節(jié)——反饋訓(xùn)練。這一環(huán)節(jié)中,我設(shè)計三個小題作為鞏固性訓(xùn)練,給學(xué)生一塊“用武”之地,讓每一位同學(xué)體驗學(xué)習(xí)數(shù)學(xué)的樂趣,成功的喜悅,找到自信,增強學(xué)習(xí)數(shù)學(xué)的愿望與信心。另外第3題是我特意安排的一道求過圓外一點的圓的切線方程,由于學(xué)生剛剛歸納了過圓上一點圓的切線方程,因此很容易產(chǎn)生思維的負遷移,另外這道題目有兩解,學(xué)生容易漏掉斜率不存在的情況,這時引導(dǎo)學(xué)生用數(shù)形結(jié)合的思想,結(jié)合初中已有的圓的知識進行判斷,這樣的設(shè)計對培養(yǎng)學(xué)生思維的嚴謹性具有良好的效果。

 。ㄎ澹┬〗Y(jié)反思——拓展引申

  1。課堂小結(jié)

  把圓的標準方程與過圓上一點圓的切線方程加以小結(jié),提煉數(shù)形結(jié)合的思想和待定系數(shù)的方法 ①圓心為,半徑為r 的圓的標準方程為:

  圓心在原點時,半徑為r 的圓的標準方程為:。

  ②已知圓的方程是,經(jīng)過圓上一點的切線的方程是:。

  2。分層作業(yè)

  (A)鞏固型作業(yè):教材P81—82:(習(xí)題7。6)1,2,4。(B)思維拓展型作業(yè):試推導(dǎo)過圓上一點的切線方程。

  3。激發(fā)新疑

  問題七 1。把圓的標準方程展開后是什么形式?

  2。方程表示什么圖形?

  在本課的結(jié)尾設(shè)計這兩個問題,作為對這節(jié)課內(nèi)容的鞏固與延伸,讓學(xué)生體會知識的起點與終點都蘊涵著問題,舊的問題解決了,新的問題又產(chǎn)生了。在知識的拓展中再次掀起學(xué)生探究的熱情。另外它為下節(jié)課研究圓的一般方程作了重要的準備。

  以上是我縱向的教學(xué)過程及簡單的設(shè)計意圖,接下來,我從三個方面橫向的進一步闡述我的教學(xué)設(shè)計: 橫向闡述教學(xué)設(shè)計

 。ㄒ唬┩怀鲋攸c 抓住關(guān)鍵 突破難點

  好學(xué)教育:

  求圓的標準方程既是本節(jié)課的教學(xué)重點也是難點,為此我布設(shè)了由淺入深的學(xué)習(xí)環(huán)境,先讓學(xué)生熟悉圓心、半徑與圓的標準方程之間的關(guān)系,逐步理解三個參數(shù)的重要性,自然形成待定系數(shù)法的解題思路,在突出重點的同時突破了難點。

  第二個教學(xué)難點就是解決實際應(yīng)用問題,這是學(xué)生固有的難題,主要是因為應(yīng)用問題的題目冗長,學(xué)生很難根據(jù)問題情境構(gòu)建數(shù)學(xué)模型,缺乏解決實際問題的信心,為此我首先用一道題目簡潔、貼近生活的實例進行引入,激發(fā)學(xué)生的求知欲,同時我借助多媒體課件的演示,引導(dǎo)學(xué)生真正走入問題的情境之中,并從中抽象出數(shù)學(xué)模型,從而消除畏難情緒,增強了信心。最后再形成應(yīng)用圓的標準方程解決實際問題的一般模式,并嘗試應(yīng)用該模式分析和解決第二個應(yīng)用問題——問題五。這樣的設(shè)計,使學(xué)生在解決問題的同時,形成了方法,難點自然突破。

  (二)學(xué)生主體 教師主導(dǎo) 探究主線

  本節(jié)課的設(shè)計用問題做鏈,環(huán)環(huán)相扣,使學(xué)生的探究活動貫穿始終。從圓的標準方程的推導(dǎo)到應(yīng)用都是在問題的指引、我的指導(dǎo)下,由學(xué)生探究完成的。另外,我重點設(shè)計了兩次思維發(fā)散點,分別是問題二和問題四的第三問,要求學(xué)生分組討論,合作交流,為學(xué)生設(shè)立充分的探究空間,學(xué)生在交流成果的過程中,既體驗了科學(xué)研究和真理發(fā)現(xiàn)的復(fù)雜與艱辛,又在我的適度引導(dǎo)、側(cè)面幫助、不斷肯定下順利完成了探究活動并走向成功,在一個個問題的驅(qū)動下,高效的完成本節(jié)的學(xué)習(xí)任務(wù)。

 。ㄈ┡囵B(yǎng)思維 提升能力 激勵創(chuàng)新

  為了培養(yǎng)學(xué)生的理性思維,我分別在問題一和問題四中,設(shè)計了兩次由特殊到一般的學(xué)習(xí)思路,培養(yǎng)學(xué)生的歸納概括能力。在問題的設(shè)計中,我利用一題多解的探究,縱向挖掘知識深度,橫向加強知識間的聯(lián)系,培養(yǎng)了學(xué)生的創(chuàng)新精神,并且使學(xué)生的有效思維量加大,隨時對所學(xué)知識和方法產(chǎn)生有意注意,使能力與知識的形成相伴而行。

  以上是我對這節(jié)課的教學(xué)預(yù)設(shè),具體的教學(xué)過程還要根據(jù)學(xué)生在課堂中的具體情況適當(dāng)調(diào)整,向生成性課堂進行轉(zhuǎn)變。最后我以赫爾巴特的一句名言結(jié)束我的說課,發(fā)揮我們的創(chuàng)造性,力爭“使教育過程成為一種藝術(shù)的事業(yè)”。

高中數(shù)學(xué)說課稿 篇4

  1、對教材地位與作用的認識

  在高中數(shù)學(xué)教學(xué)中,作為數(shù)學(xué)思想應(yīng)向?qū)W生滲透,強化的有:函數(shù)與方程思想;數(shù)形結(jié)合思想;分類討論思想;等價轉(zhuǎn)化及運動變化思想。不是所有的課都能把這些思想自然的容納進去,但由于“曲線和方程”這一節(jié)在教材中的特殊地位,它把代數(shù)和幾何兩個單科自然而緊密地結(jié)合在一起,因而上述思想能用到大半,這不能不引起我們教師的重視!扒和方程”這節(jié)教材揭示了幾何中的形與代數(shù)中的數(shù)相統(tǒng)一的關(guān)系,為“依形判數(shù)”與“就數(shù)論形”的相互轉(zhuǎn)化開辟了途徑,這正體現(xiàn)了解析幾何這門課的基本思想,用代數(shù)的方法研究幾何問題!鼻與方程”是解析幾何中最為重要的基本內(nèi)容之一.在理論上它是基礎(chǔ),在應(yīng)用上它是工具,對全部解析幾何的教學(xué)有著深遠的影響,另外在高考中也是考察的重點內(nèi)容,尤其是求曲線的方程,學(xué)生只有透徹理解了曲線與方程的含義,才算是找到了解析幾何學(xué)習(xí)得入門之路。應(yīng)該認識到這節(jié)“曲線和方程”得開頭課是解析幾何教學(xué)的“重頭戲”!

  2、教學(xué)目標的確定及依據(jù)

  (大綱的要求)通過本小節(jié)的學(xué)習(xí),要使學(xué)生了解解析幾何的基本思想,了解用坐標法研究幾何問題的初步知識和觀點,理解曲線的方程和方程的曲線的意義,初步掌握求曲線的方程的方法.所以第一課我在教學(xué)目標上是這樣設(shè)定的:

  1).了解曲線上的點與方程的解之間的一一對應(yīng)關(guān)系,領(lǐng)會“曲線的方程”與“方程的曲線”的概念及其關(guān)系,并能作簡單的判斷與推理;

  2).在形成概念的過程中,培養(yǎng)分析、抽象和概括等思維能力;

  3)會證明已知曲線的方程。

  本節(jié)課的教學(xué)目標定在“初步掌握”的水平上,但“初步”絕不等同于“含糊”,它反應(yīng)在學(xué)生的學(xué)習(xí)行為上,即要求學(xué)生能答出曲線與方程間必須滿足的兩個關(guān)系,才能稱作“方程的曲線”和“曲線的方程”,兩者缺一不可,并能借助實例進一步明確這二者的區(qū)別。知識的學(xué)習(xí)與能力的培養(yǎng)是同步的,在具體操作上結(jié)合圖形分析與反例,來辨析“兩個關(guān)系”之間的區(qū)別,從認識特例到歸納出曲線的方程和方程的曲線一般概念,因而在形成概念的過程中,培養(yǎng)學(xué)生分析、抽象、概括的思維能力.會證明已知曲線的方程就能更進一步的理解曲線和方程概念的含義并為下節(jié)課求曲線的方程打基礎(chǔ).

  3、如何突破重難點

  本小節(jié)的重點是理解曲線與方程的有關(guān)概念與相互聯(lián)系,以及求曲線方程的方法、步驟.只有深刻理解了曲線與方程的含義,才能真正掌握好求曲線軌跡方程的一般方法,進一步學(xué)好后面的內(nèi)容.曲線和方程的概念比較抽象,由直觀表象到抽象概念有相當(dāng)難度,對學(xué)生理解上可能遇到的問題是學(xué)生不理解“曲線上的點的坐標都是方程的解”和”“以這個方程的解為坐標的點都是曲線上的點”這兩句話在揭示“曲線和方程”關(guān)系各自所起的作用。有的學(xué)生只從字面上死記硬背;有的學(xué)生甚至誤以為這兩句話是同義反復(fù)。要突破這一點,關(guān)鍵在于利用充要條件,函數(shù)圖象,直線和方程,軌跡等知.識,正反兩方面說明問題.

  本節(jié)課的難點在于對定義中為什么要規(guī)定兩個關(guān)系(純粹性和完備性)產(chǎn)生困惑,原因是不理解兩者缺任何一個都將擴大概念的外延。

  4、對教學(xué)過程的設(shè)計

  今天要講的“曲線和方程”這部分教材的內(nèi)容主要包括“曲線方程的概念”,“已知曲線求它的方程”、“已知方程作出它的曲線”等。在課時安排上分為3個課時進行教學(xué),具體的課時分配是:第一課時講解“曲線與方程”和“方程與曲線”的概念及其關(guān)系;第二課時講解求曲線的方程一般方法,第三課時為習(xí)題課,通過練習(xí)來總結(jié)、鞏固和深化本節(jié)知識。如果以為學(xué)生不真正領(lǐng)悟曲線和方程得關(guān)系照樣能求出方程,照樣能計算某些難題,因而可以忽視這個基本概念得教學(xué),這不能不說是一種“舍本逐末”得偏見。

  在教材中,曲線和方程這一概念是隨著知識的講授而不斷深化,逐步為學(xué)生所理解,因而教材中從直線開始,多次,重復(fù)地闡述,這說明其重要性.同時也說明理解它,掌握它確實需要一個過程.數(shù)學(xué)本身是很抽象,把數(shù)學(xué)和實際問題相結(jié)合才能激發(fā)學(xué)生的學(xué)習(xí)興趣,真正達到素質(zhì)教育的要求。根據(jù)以上考慮,確定了這節(jié)課教學(xué)過程的基本線索是:實際問題引入,提出課題→運用反例,揭示內(nèi)涵→討論歸納,得出定義→集合表述,強化理解→知識應(yīng)用,反復(fù)辨析。

  教材的編寫也往往體現(xiàn)著教法.,例如,本節(jié)一開頭說“我們研究過直線的各種方程,討論了直線和二元一次方程的關(guān)系。”學(xué)生已經(jīng)有了用方程(有時用函數(shù)式的形式出現(xiàn))表示曲線的感性認識,在本節(jié)教學(xué)中充分發(fā)揮這些感性認識的作用。從人造地球衛(wèi)星運行的軌道等生動形象的'實際問題引入,引起學(xué)生的興趣和好奇心以及對數(shù)學(xué)的應(yīng)用有了更高的認識,更激發(fā)他們進一步學(xué)好數(shù)學(xué)的決心。(具體……)提出課題。運用學(xué)生熟知的知識,1)求線段AB的垂直平分線方程和2)作出方程y=x2的圖象作為引例,從曲線到方程,從方程到曲線兩方面入手分析了曲線上的點和方程的解之間的關(guān)系,為形成曲線和方程的概念提供了實際模型,但是如果就此而由教師直接給出結(jié)論,那就不僅會失去開發(fā)學(xué)生思維的機會,影響學(xué)生的理解,而且會使教學(xué)變得枯燥乏味,抑制了學(xué)生學(xué)習(xí)的主動性和積極性,接著用反例來突破難點。通過反例1)直線去掉第三象限部分,則方程y=x的解為坐標的點不都在曲線上,以及2)改方程為,那么曲線上就混有不滿足方程的點坐標就此揭示“兩者缺一”與直覺的矛盾,通過舉反例和步步追問使我要的答案逐步明了,從而又促使學(xué)生對概念表述的嚴格性進行探索,學(xué)生自已認識曲線和方程的概念必須要具備的兩個關(guān)系,培養(yǎng)學(xué)生分析,歸納問題的能力,自然得出定義。并且把這個關(guān)系板書到黑板上,以示這就是這節(jié)課的重點。為了在重難點有所突破后強化其認識,又用集合相等的概念來解釋曲線和方程的對應(yīng)關(guān)系,并以此為工具來分析實例,這將有助于學(xué)生的理解,有助于學(xué)生通其法,知其理。

  然后通過運用與練習(xí),糾正錯誤的認識,促使對概念的正確理解,通過反復(fù)重現(xiàn),可以不斷領(lǐng)悟,加強識記。所以安排了例1,例2(見課件)目的也在于幫助學(xué)生正確理解概念,通過解題辨析“兩個關(guān)系”,實現(xiàn)本節(jié)課的教學(xué)目標,為此題目中的“曲線”和“方程”都力求簡單,由此得出點在曲線上的充要條件。

  曲線是符合某種條件的點的軌跡,為了下節(jié)課“求曲線的方程”的教學(xué),安排了例3(見課件)證明曲線的方程,增加學(xué)生的感性認識,由于教材上有嚴謹?shù)淖C明過程,讓學(xué)生閱讀并總結(jié)證明已知曲線的方程的方法和步驟,上升到理論上,可以培養(yǎng)學(xué)生獨立思考,閱讀歸納的能力。為了讓學(xué)生更深入的理解這節(jié)課的主要內(nèi)容,通過4個變式引申檢查他們的掌握程度,但難度不能太大,我選擇這樣幾個練習(xí):(略)簡單評講后小結(jié)本課的主要內(nèi)容,進一步強化“曲線和方程”概念中兩個關(guān)系缺一不可,只有符合關(guān)系1)2)才能進行數(shù)與形的轉(zhuǎn)化。由于下節(jié)課的內(nèi)容是求曲線的方程,特地安排了一個思考探索題。

  5、對學(xué)生學(xué)習(xí)活動的引導(dǎo)和組織

  教案的設(shè)計與教案的實施往往有一定的距離,本節(jié)課有著概念性強,思維量大,例題與練習(xí)題不多的特點,這就決定了整節(jié)課將以學(xué)生的觀察、思考、討論為主,通過提問,舉例,啟發(fā),互動完成教學(xué),在具體操作上比較靈活,視學(xué)生的具體情況而定,把握學(xué)生的思維規(guī)律于數(shù)學(xué)思想的基本方法。例如,在概念教學(xué)中引導(dǎo)學(xué)生看反例,通過正反對比的方法,當(dāng)學(xué)生觀察了例1回答不清為什么,可以舉出幾個點的坐標作檢驗,這就是”從特殊到一般“的方法:或引導(dǎo)學(xué)生看圖,比比劃劃,這就是“從直觀到抽象”的方法。只要啟發(fā)方法符合學(xué)生的認識規(guī)律,學(xué)生的認識活動就會順利展開,而且在認知的過程中訓(xùn)練了探索的能力。強化數(shù)形結(jié)合、化歸與轉(zhuǎn)化的數(shù)學(xué)思想方法,完善學(xué)生的數(shù)學(xué)的結(jié)構(gòu),讓學(xué)生動手、動腦,以及觀察、聯(lián)想、猜測、歸納等合理推理,鼓勵學(xué)生多向思維、積極思考,勇于探索,從中培養(yǎng)學(xué)生合情推理能力,數(shù)學(xué)交流與合作能力以及主動參與的精神。

高中數(shù)學(xué)說課稿 篇5

  一、教材分析

  1.教材所處的地位和作用

  本節(jié)課所學(xué)內(nèi)容為算法案例3,主要學(xué)習(xí)如何給一組數(shù)據(jù)排序,學(xué)習(xí)作程序框圖和設(shè)計程序,通過本節(jié)課的學(xué)習(xí)之后將能使許多復(fù)雜的問題在計算機上得到解決,減少工作量。

  2 教學(xué)的重點和難點

  重點:兩種排序法的排序步驟及計算機程序設(shè)計

  難點:排序法的計算機程序設(shè)計

  二、教學(xué)目標分析

  1.知識與技能目標:

  掌握數(shù)據(jù)排序的原理能使用直接排序法與冒泡排序法給一組數(shù)據(jù)排序,進而能設(shè)計冒泡排序法的程序框圖及程序,理解數(shù)學(xué)算法與計算機算法的區(qū)別,理解計算機對數(shù)學(xué)的輔助作用。

  2.過程與方法目標:

  能根據(jù)排序法中的直接插入排序法與冒泡排序法的步驟,了解數(shù)學(xué)計算轉(zhuǎn)換為計算機計算的途徑,從而探究計算機算法與數(shù)學(xué)算法的區(qū)別,體會計算機對數(shù)學(xué)學(xué)習(xí)的輔助作用。

  3.情感,態(tài)度和價值觀目標

  通過對排序法的學(xué)習(xí),領(lǐng)會數(shù)學(xué)計算與計算機計算的區(qū)別,充分認識信息技術(shù)對數(shù)學(xué)的促進。

  三、教學(xué)方法與手段分析

  1.教學(xué)方法:充分發(fā)揮學(xué)生的主體作用和教師的主導(dǎo)作用,采用啟發(fā)式,并遵循循序漸進的教學(xué)原則。這有利于學(xué)生掌握從現(xiàn)象到本質(zhì),從已知到未知逐步形成概念的學(xué)習(xí)方法,有利于發(fā)展學(xué)生抽象思維能力和邏輯推理能力。

  2.教學(xué)手段:通過各種教學(xué)媒體(計算機)調(diào)動學(xué)生參與課堂教學(xué)的主動性與積極性。

  四、學(xué)法分析

  模仿排序法中數(shù)字排序的步驟,理解計算機計算的一般步驟,領(lǐng)會數(shù)學(xué)計算在計算機上實施的要求。

  五、教學(xué)過程分析

  一、創(chuàng)設(shè)情境

  提出問題:大家考完試后如果要排一下成績的話,單靠人手該怎樣操作呢?如果我們用計算機里的軟件電子表格對分數(shù)排序就非常簡單,那么電子計算機是怎么對數(shù)據(jù)進行排序的呢?

  通過這個問題,引出我們這節(jié)課所要學(xué)習(xí)的兩種排序方法--直接插入排序法與冒泡排序法

  二、探索新知

  這里我先讓學(xué)生們閱讀課本P30-P31的內(nèi)容,然后回答下面的問題:

  (1)排序法中的直接插入排序法與冒泡排序法的步驟有什么區(qū)別?

  (2)冒泡法排序中對5個數(shù)字進行排序最多需要多少趟?

  (3)在冒泡法排序?qū)?個數(shù)字進行排序的每一趟中需要比較大小幾次?

  提出問題,然后讓學(xué)生們作出回答,這樣可以促使學(xué)生們能夠積極思考,自主地去學(xué)習(xí)新的知識,而不只是單向的由老師向?qū)W生灌輸。

  三、知識應(yīng)用

  例1 用冒泡排序法對數(shù)據(jù)7,5,3,9,1從小到大進行排序

  (根據(jù)剛剛提問所總結(jié)的方法完成解題步驟)

  練習(xí):寫出用冒泡排序法對5個數(shù)據(jù)4,11,7,9,6排序的過程中每一趟排序的結(jié)果.

 。皶r將學(xué)到的知識應(yīng)用,有利于知識的掌握)

  例2 設(shè)計冒泡排序法對5個數(shù)據(jù)進行排序的程序框圖.

  (在之前所學(xué)習(xí)知識的基礎(chǔ)上畫出程序框圖,然后給出一個思考題)

  思考:直接插入排序法的程序框圖如何設(shè)計?可否把上述程序框圖轉(zhuǎn)化為程序?

 。ㄖ蟪鲆粋練習(xí)題,找出思考題的答案)

  練習(xí):用直接插入排序法對例1中的數(shù)據(jù)從小到大排序,畫出程序框圖,并轉(zhuǎn)化為程序運行求出最終答案。

  (這里可以使學(xué)生們領(lǐng)會數(shù)學(xué)計算與計算機計算的區(qū)別,充分認識信息技術(shù)對數(shù)學(xué)的促進。)

  四、課堂小結(jié):

  (1)數(shù)字排序法中的常見的兩種排序法直接插入排序法與冒泡排序法它們的排序步驟

  (2兩種排序法的計算機程序設(shè)計

  (3)注意循環(huán)語句的使用與算法的循環(huán)次數(shù),對算法進行改進。

  通過小結(jié)使學(xué)生們對知識有一個系統(tǒng)的認識,突出重點,抓住關(guān)鍵,培養(yǎng)概括能力。

高中數(shù)學(xué)說課稿 篇6

  一、教學(xué)目標

  (一)知識與技能

  1、進一步熟練掌握求動點軌跡方程的基本方法。

  2、體會數(shù)學(xué)實驗的直觀性、有效性,提高幾何畫板的操作能力。

  (二)過程與方法

  1、培養(yǎng)學(xué)生觀察能力、抽象概括能力及創(chuàng)新能力。

  2、體會感性到理性、形象到抽象的思維過程。

  3、強化類比、聯(lián)想的方法,領(lǐng)會方程、數(shù)形結(jié)合等思想。

  (三)情感態(tài)度價值觀

  1、感受動點軌跡的動態(tài)美、和諧美、對稱美

  2、樹立競爭意識與合作精神,感受合作交流帶來的成功感,樹立自信心,激發(fā)提出問題和解決問題的勇氣

  二、教學(xué)重點與難點

  教學(xué)重點:運用類比、聯(lián)想的方法探究不同條件下的軌跡

  教學(xué)難點:圖形、文字、符號三種語言之間的過渡

  三、、教學(xué)方法和手段

  【教學(xué)方法】觀察發(fā)現(xiàn)、啟發(fā)引導(dǎo)、合作探究相結(jié)合的教學(xué)方法。啟發(fā)引導(dǎo)學(xué)生積極思考并對學(xué)生的思維進行調(diào)控,幫助學(xué)生優(yōu)化思維過程,在此基礎(chǔ)上,提供給學(xué)生交流的機會,幫助學(xué)生對自己的思維進行組織和澄清,并能清楚地、準確地表達自己的數(shù)學(xué)思維。

  【教學(xué)手段】利用網(wǎng)絡(luò)教室,四人一機,多媒體教學(xué)手段。通過上述教學(xué)手段,一方面:再現(xiàn)知識產(chǎn)生的過程,通過多媒體動態(tài)演示,突破學(xué)生在舊知和新知形成過程中的障礙(靜態(tài)到動態(tài));另一方面:節(jié)省了時間,提高了課堂教學(xué)的效率,激發(fā)了學(xué)生學(xué)習(xí)的興趣。

  【教學(xué)模式】重點中學(xué)實施素質(zhì)教育的課堂模式“創(chuàng)設(shè)情境、激發(fā)情感、主動發(fā)現(xiàn)、主動發(fā)展”。

高中數(shù)學(xué)說課稿 篇7

各位同仁,各位專家:

  我說課的課題是《任意角的三角函數(shù)》,內(nèi)容取自蘇教版高中實驗教科書《數(shù)學(xué)》第四冊 第1。2節(jié)

  先對教材進行分析

  教學(xué)內(nèi)容:任意角三角函數(shù)的定義、定義域,三角函數(shù)值的符號。

  地位和作用: 任意角的三角函數(shù)是本章教學(xué)內(nèi)容的基本概念對三角內(nèi)容的整體學(xué)習(xí)至關(guān)重要。同時它又為平面向量、解析幾何等內(nèi)容的學(xué)習(xí)作必要的準備,通過這部分內(nèi)容的學(xué)習(xí),又可以幫助學(xué)生更加深入理解函數(shù)這一基本概念。所以這個內(nèi)容要認真探討教材,精心設(shè)計過程。

  教學(xué)重點:任意角三角函數(shù)的定義

  教學(xué)難點:正確理解三角函數(shù)可以看作以實數(shù)為自變量的函數(shù)、初中用邊長比值來定義轉(zhuǎn)變?yōu)樽鴺讼迪掠米鴺吮戎刀x的觀念的轉(zhuǎn)換以及坐標定義的合理性的理解;

  學(xué)情分析:

  學(xué)生已經(jīng)掌握的內(nèi)容,學(xué)生學(xué)習(xí)能力

  1。初中學(xué)生已經(jīng)學(xué)習(xí)了基本的銳角三角函數(shù)的定義,掌握了銳角三角函數(shù)的一些常見的知識和求法。

  2。我們南山區(qū)經(jīng)過多年的初中課改,學(xué)生已經(jīng)具備較強的自學(xué)能力,多數(shù)同學(xué)對數(shù)學(xué)的學(xué)習(xí)有相當(dāng)?shù)呐d趣和積極性。

  3。在探究問題的能力,合作交流的意識等方面發(fā)展不夠均衡,尚有待加強必須在老師一定的指導(dǎo)下才能進行

  針對對教材內(nèi)容重難點的和學(xué)生實際情況的分析我們制定教學(xué)目標如下

  知識目標:

 。1)任意角三角函數(shù)的定義;三角函數(shù)的定義域;三角函數(shù)值的符號,

  能力目標:

 。1)理解并掌握任意角的三角函數(shù)的定義;

 。2)正確理解三角函數(shù)是以實數(shù)為自變量的函數(shù);

 。3)通過對定義域,三角函數(shù)值的符號的推導(dǎo),提高學(xué)生分析探究解決問題的能力。

  德育目標:

 。1)學(xué)習(xí)轉(zhuǎn)化的思想,(2)培養(yǎng)學(xué)生嚴謹治學(xué)、一絲不茍的科學(xué)精神;

  針對學(xué)生實際情況為達到教學(xué)目標須精心設(shè)計教學(xué)方法

  教法學(xué)法:溫故知新,逐步拓展

 。1)在復(fù)習(xí)初中銳角三角函數(shù)的定義的基礎(chǔ)上一步一步擴展內(nèi)容,發(fā)展新知識,形成新的概念;

  (2)通過例題講解分析,逐步引出新知識,完善三角定義

  運用多媒體工具

 。1)提高直觀性增強趣味性。

  教學(xué)過程分析

  總體來說, 由舊及新,由易及難,

  逐步加強,逐步推進

  先由初中的直角三角形中銳角三角函數(shù)的定義

  過度到直角坐標系中銳角三角函數(shù)的定義

  再發(fā)展到直角坐標系中任意角三角函數(shù)的定義

  給定定義后通過應(yīng)用定義又逐步發(fā)現(xiàn)新知識拓展完善定義。

  具體教學(xué)過程安排

  引入: 復(fù)習(xí)提問:初中直角三角形中銳角的正弦余弦正切是怎樣定義的?

  由學(xué)生回答

  SinA=對邊/斜邊=BC/AB

  cosA=對邊/斜邊=AC/AB

  tanA=對邊/斜邊=BC/AC

  逐步拓展:在高中我們已經(jīng)建立了直角坐標系, 把“定義媒介”從直角三角形改為平面直角坐標系。

  我們知道,隨著角的概念的推廣,研究角時多放在直角坐標系里, 那么三角函數(shù)的定義能否也放到坐標系去研究呢?

  引導(dǎo)學(xué)生發(fā)現(xiàn)B的坐標和邊長的關(guān)系。進一步啟發(fā)他們發(fā)現(xiàn)由于相似三角形的相似比導(dǎo)致OB上任一P點都可以代換B,把三角函數(shù)的定義發(fā)展到用終邊上任一點的坐標來表示, 從而銳角三角函數(shù)可以使用直角坐標系來定義,自然地,要想定義任意一個角三角函數(shù),便考慮放在直角坐標中進行合理進行定義了

  從而得到

  知識點一:任意一個角的三角函數(shù)的定義

  提醒學(xué)生思考:由于相似比相等,對于確定的角A ,這三個比值的大小和P點在角的終邊上的位置無關(guān)。

  精心設(shè)計例題,引出新內(nèi)容深化概念,完善定義

  例1已知角A 的終邊經(jīng)過P(2,—3),求角A的三個三角函數(shù)值

  (此題由學(xué)生自己分析獨立動手完成)

  例題變式1,已知角A 的大小是30度,由定義求角A的三個三角函數(shù)值

  結(jié)合變式我們發(fā)現(xiàn)三個三角函數(shù)值的大小與角的大小有關(guān),只會隨角的大小而變化,符合當(dāng)初函數(shù)的定義,而我們又一直稱呼為三角函數(shù),

  提出問題:這三個新的定義確實問是函數(shù)嗎?為什么?

  從而引出函數(shù)極其定義域

  由學(xué)生分析討論,得出結(jié)論

  知識點二:三個三角函數(shù)的定義域

  同時教師強調(diào):由于弧度制使角和實數(shù)建立了一一對應(yīng)關(guān)系,所以三角函數(shù)是以實數(shù)為自變量的函數(shù)

  例題變式2, 已知角A 的終邊經(jīng)過P(—2a,—3a)( a不為0),求角A的三個三角函數(shù)值

  解答中需要對變量的正負即角所在象限進行討論, 讓學(xué)生意識到三角函數(shù)值的正負與角所在象限有關(guān),從而導(dǎo)出第三個知識點

  知識點三:三角函數(shù)值的正負與角所在象限的關(guān)系

  由學(xué)生推出結(jié)論,教師總結(jié)符號記憶方法,便于學(xué)生記憶

  例題2:已知A在第二象限且 sinA=0。2 求cosA,tanA

  求cosA,tanA

  綜合練習(xí)鞏固提高,更為下節(jié)的同角關(guān)系式打下基礎(chǔ)

  拓展,如果不限制A的象限呢,可以留作課外探討

  小結(jié)回顧課堂內(nèi)容

  課堂作業(yè)和課外作業(yè)以加強知識的記憶和理解

  課堂作業(yè)P16 1,2,4

 。▽W(xué)生演板,后集體討論修訂答案同桌討論,由學(xué)生回答答案)

  課后分層作業(yè)(有利于全體學(xué)生的發(fā)展)

  必作P23 1(2),5(2),6(2)(4) 選作P23 3,4

  板書設(shè)計(見PPT)

高中數(shù)學(xué)說課稿 篇8

  大家好,今天我向大家說課的題目是《正弦定理》。下面我將從以下幾個方面介紹我這堂課的教學(xué)設(shè)計。

  一 教材分析

  本節(jié)知識是必修五第一章《解三角形》的第一節(jié)內(nèi)容,與初中學(xué)習(xí)的三角形的邊和角的基本關(guān)系有密切的聯(lián)系與判定三角形的全等也有密切聯(lián)系,在日常生活和工業(yè)生產(chǎn)中也時常有解三角形的問題,而且解三角形和三角函數(shù)聯(lián)系在高考當(dāng)中也時?家恍┙獯痤}。因此,正弦定理和余弦定理的知識非常重要。

  根據(jù)上述教材內(nèi)容分析,考慮到學(xué)生已有的認知結(jié)構(gòu)心理特征及原有知識水平,制定如下教學(xué)目標:

  認知目標:在創(chuàng)設(shè)的問題情境中,引導(dǎo)學(xué)生發(fā)現(xiàn)正弦定理的內(nèi)容,推證正弦定理及簡單運用正弦定理與三角形的內(nèi)角和定理解斜三角形的兩類問題。

  能力目標:引導(dǎo)學(xué)生通過觀察,推導(dǎo),比較,由特殊到一般歸納出正弦定理,培養(yǎng)學(xué)生的創(chuàng)新意識和觀察與邏輯思維能力,能體會用向量作為數(shù)形結(jié)合的工具,將幾何問題轉(zhuǎn)化為代數(shù)問題。

  情感目標:面向全體學(xué)生,創(chuàng)造平等的教學(xué)氛圍,通過學(xué)生之間、師生之間的交流、合作和評價,調(diào)動學(xué)生的主動性和積極性,給學(xué)生成功的體驗,激發(fā)學(xué)生學(xué)習(xí)的興趣。

教學(xué)重點:正弦定理的內(nèi)容,正弦定理的證明及基本應(yīng)用。

  教學(xué)難點:正弦定理的探索及證明,已知兩邊和其中一邊的對角解三角形時判斷解的個數(shù)。

  二 教法

  根據(jù)教材的內(nèi)容和編排的特點,為是更有效地突出重點,空破難點,以學(xué)業(yè)生的發(fā)展為本,遵照學(xué)生的認識規(guī)律,本講遵照以教師為主導(dǎo),以學(xué)生為主體,訓(xùn)練為主線的指導(dǎo)思想, 采用探究式課堂教學(xué)模式,即在教學(xué)過程中,在教師的啟發(fā)引導(dǎo)下,以學(xué)生獨立自主和合作交流為前提,以“正弦定理的發(fā)現(xiàn)”為基本探究內(nèi)容,以生活實際為參照對象,讓學(xué)生的思維由問題開始,到猜想的得出,猜想的探究,定理的推導(dǎo),并逐步得到深化。突破重點的手段:抓住學(xué)生情感的興奮點,激發(fā)他們的興趣,鼓勵學(xué)生大膽猜想,積極探索,以及及時地鼓勵,使他們知難而進。另外,抓知識選擇的切入點,從學(xué)生原有的認知水平和所需的知識特點入手,教師在學(xué)生主體下給以適當(dāng)?shù)奶崾竞椭笇?dǎo)。突破難點的方法:抓住學(xué)生的能力線聯(lián)系方法與技能使學(xué)生較易證明正弦定理,另外通過例題和練習(xí)來突破難點

  三 學(xué)法:

  指導(dǎo)學(xué)生掌握“觀察——猜想——證明——應(yīng)用”這一思維方法,采取個人、小組、集體等多種解難釋疑的嘗試活動,將自己所學(xué)知識應(yīng)用于對任意三角形性質(zhì)的探究。讓學(xué)生在問題情景中學(xué)習(xí),觀察,類比,思考,探究,概括,動手嘗試相結(jié)合,體現(xiàn)學(xué)生的主體地位,增強學(xué)生由特殊到一般的數(shù)學(xué)思維能力,形成了實事求是的科學(xué)態(tài)度,增強了鍥而不舍的求學(xué)精神。

  四 教學(xué)過程

  第一:創(chuàng)設(shè)情景,大概用2分鐘

  第二:實踐探究,形成概念,大約用25分鐘

  第三:應(yīng)用概念,拓展反思,大約用13分鐘

 。ㄒ唬﹦(chuàng)設(shè)情境,布疑激趣

  “興趣是最好的老師”,如果一節(jié)課有個好的開頭,那就意味著成功了一半,本節(jié)課由一個實際問題引入,“工人師傅的一個三角形的模型壞了,只剩下如右圖所示的部分,∠A=47°,∠B=53°,AB長為1m,想修好這個零件,但他不知道AC和BC的長度是多少好去截料,你能幫師傅這個忙嗎?”激發(fā)學(xué)生幫助別人的熱情和學(xué)習(xí)的興趣,從而進入今天的學(xué)習(xí)課題。

  (二)探尋特例,提出猜想

  1.激發(fā)學(xué)生思維,從自身熟悉的特例(直角三角形)入手進行研究,發(fā)現(xiàn)正弦定理。

  2.那結(jié)論對任意三角形都適用嗎?指導(dǎo)學(xué)生分小組用刻度尺、量角器、計算器等工具對一般三角形進行驗證。

  3.讓學(xué)生總結(jié)實驗結(jié)果,得出猜想:

  在三角形中,角與所對的邊滿足關(guān)系

  這為下一步證明樹立信心,不斷的使學(xué)生對結(jié)論的認識從感性逐步上升到理性。

 。ㄈ┻壿嬐评,證明猜想

  1.強調(diào)將猜想轉(zhuǎn)化為定理,需要嚴格的理論證明。

  2.鼓勵學(xué)生通過作高轉(zhuǎn)化為熟悉的直角三角形進行證明。

  3.提示學(xué)生思考哪些知識能把長度和三角函數(shù)聯(lián)系起來,繼而思考向量分析層面,用數(shù)量積作為工具證明定理,體現(xiàn)了數(shù)形結(jié)合的數(shù)學(xué)思想。

  4.思考是否還有其他的方法來證明正弦定理,布置課后練習(xí),提示,做三角形的外接圓構(gòu)造直角三角形,或用坐標法來證明

 。ㄋ模w納總結(jié),簡單應(yīng)用

  1.讓學(xué)生用文字敘述正弦定理,引導(dǎo)學(xué)生發(fā)現(xiàn)定理具有對稱和諧美,提升對數(shù)學(xué)美的享受。

  2.正弦定理的內(nèi)容,討論可以解決哪幾類有關(guān)三角形的問題。

  3.運用正弦定理求解本節(jié)課引引入的三角形零件邊長的問題。自己參與實際問題的解決,能激發(fā)學(xué)生知識后用于實際的價值觀。

 。ㄎ澹┲v解例題,鞏固定理

  1.例1。在△ABC中,已知A=32°,B=81.8°,a=42.9cm.解三角形.

  例1簡單,結(jié)果為唯一解,如果已知三角形兩角兩角所夾的邊,以及已知兩角和其中一角的對邊,都可利用正弦定理來解三角形。

  2. 例2. 在△ABC中,已知a=20cm,b=28cm,A=40°,解三角形.

高中數(shù)學(xué)說課稿 篇9

  一、教材分析

  1.《指數(shù)函數(shù)》在教材中的地位、作用和特點

  《指數(shù)函數(shù)》是人教版高中數(shù)學(xué)(必修)第一冊第二章“函數(shù)”的第六節(jié)內(nèi)容,是在學(xué)習(xí)了《指數(shù)》一節(jié)內(nèi)容之后編排的。通過本節(jié)課的學(xué)習(xí),既可以對指數(shù)和函數(shù)的概念等知識進一步鞏固和深化,又可以為后面進一步學(xué)習(xí)對數(shù)、對數(shù)函數(shù)尤其是利用互為反函數(shù)的圖象間的關(guān)系來研究對數(shù)函數(shù)的性質(zhì)打下堅實的概念和圖象基礎(chǔ),又因為《指數(shù)函數(shù)》是進入高中以后學(xué)生遇到的第一個系統(tǒng)研究的函數(shù),對高中階段研究對數(shù)函數(shù)、三角函數(shù)等完整的函數(shù)知識,初步培養(yǎng)函數(shù)的應(yīng)用意識打下了良好的學(xué)習(xí)基礎(chǔ),所以《指數(shù)函數(shù)》不僅是本章《函數(shù)》的重點內(nèi)容,也是高中學(xué)段的主要研究內(nèi)容之一,有著不可替代的重要作用。

  此外,《指數(shù)函數(shù)》的知識與我們的日常生產(chǎn)、生活和科學(xué)研究有著緊密的聯(lián)系,尤其體現(xiàn)在細胞分裂、貸款利率的計算和考古中的年代測算等方面,因此學(xué)習(xí)這部分知識還有著廣泛的現(xiàn)實意義。本節(jié)內(nèi)容的特點之一是概念性強,特點之二是凸顯了數(shù)學(xué)圖形在研究函數(shù)性質(zhì)時的重要作用。

  2.教學(xué)目標、重點和難點

  通過初中學(xué)段的學(xué)習(xí)和高中對集合、函數(shù)等知識的系統(tǒng)學(xué)習(xí),學(xué)生對函數(shù)和圖象的關(guān)系已經(jīng)構(gòu)建了一定的認知結(jié)構(gòu),主要體現(xiàn)在三個方面:

  知識維度:對正比例函數(shù)、反比例函數(shù)、一次函數(shù),二次函數(shù)等最簡單的函數(shù)概念和性質(zhì)已有了初步認識,能夠從初中運動變化的角度認識函數(shù)初步轉(zhuǎn)化到從集合與對應(yīng)的觀點來認識函數(shù)。

  技能維度:學(xué)生對采用“描點法”描繪函數(shù)圖象的方法已基本掌握,能夠為研究《指數(shù)函數(shù)》的性質(zhì)做好準備。

  素質(zhì)維度:由觀察到抽象的數(shù)學(xué)活動過程已有一定的體會,已初步了解了數(shù)形結(jié)合的思想。

  鑒于對學(xué)生已有的知識基礎(chǔ)和認知能力的分析,根據(jù)《教學(xué)大綱》的要求,我確定本節(jié)課的教學(xué)目標、教學(xué)重點和難點如下:

  (1)知識目標:

  ①掌握指數(shù)函數(shù)的概念;

  ②掌握指數(shù)函數(shù)的圖象和性質(zhì);

 、勰艹醪嚼弥笖(shù)函數(shù)的概念解決實際問題;

  (2)技能目標:

 、贊B透數(shù)形結(jié)合的基本數(shù)學(xué)思想方法

  ②培養(yǎng)學(xué)生觀察、聯(lián)想、類比、猜測、歸納的能力;

  (3)情感目標:

 、袤w驗從特殊到一般的學(xué)習(xí)規(guī)律,認識事物之間的普遍聯(lián)系與相互轉(zhuǎn)化,培養(yǎng)學(xué)生用聯(lián)系的觀點看問題②通過教學(xué)互動促進師生情感,激發(fā)學(xué)生的學(xué)習(xí)興趣,提高學(xué)生抽象、概括、分析、綜合的能力

 、垲I(lǐng)會數(shù)學(xué)科學(xué)的應(yīng)用價值。

  (4)教學(xué)重點:指數(shù)函數(shù)的圖象和性質(zhì)。

  (5)教學(xué)難點:指數(shù)函數(shù)的圖象性質(zhì)與底數(shù)a的關(guān)系。

  突破難點的關(guān)鍵:尋找新知生長點,建立新舊知識的聯(lián)系,在理解概念的基礎(chǔ)上充分結(jié)合圖象,利用數(shù)形結(jié)合來掃清障礙。

  二、教法設(shè)計

  由于《指數(shù)函數(shù)》這節(jié)課的特殊地位,在本節(jié)課的教法設(shè)計中,我力圖通過這一節(jié)課的教學(xué)達到不僅使學(xué)生初步理解并能簡單應(yīng)用指數(shù)函數(shù)的知識,更期望能引領(lǐng)學(xué)生掌握研究初等函數(shù)圖象性質(zhì)的一般思路和方法,為今后研究其它的函數(shù)做好準備,從而達到培養(yǎng)學(xué)生學(xué)習(xí)能力的目的,我根據(jù)自己對“誘思探究”教學(xué)模式和“情景式”教學(xué)模式的認識,將二者結(jié)合起來,主要突出了幾個方面:

  1.創(chuàng)設(shè)問題情景.按照指數(shù)函數(shù)的在生活中的實際背景給出兩個實例,充分調(diào)動學(xué)生的學(xué)習(xí)興趣,激發(fā)學(xué)生的探究心理,順利引入課題,而這兩個例子又恰好為研究指數(shù)函數(shù)中底數(shù)大于1和底數(shù)大于0小于1的圖象做好了準備。

  2.強化“指數(shù)函數(shù)”概念.引導(dǎo)學(xué)生結(jié)合指數(shù)的有關(guān)概念來歸納出指數(shù)函數(shù)的定義,并向?qū)W生指出指數(shù)函數(shù)的形式特點,請學(xué)生思考對于底數(shù)a是否需要限制,如不限制會有什么問題出現(xiàn),這樣避免了學(xué)生對于底數(shù)a范圍分類的不清楚,也為研究指數(shù)函數(shù)的圖象做了“分類討論”的鋪墊。

  3.突出圖象的作用.在數(shù)學(xué)學(xué)習(xí)過程中,圖形始終使我們需要借助的重要輔助手段。一位數(shù)學(xué)家曾經(jīng)說過“數(shù)離形時少直觀,形離數(shù)時難入微”,而在研究指數(shù)函數(shù)的性質(zhì)時,更是直接由圖象觀察得出性質(zhì),因此圖象發(fā)揮了主要的作用。

  4.注意數(shù)學(xué)與生活和實踐的聯(lián)系.數(shù)學(xué)的本質(zhì)是來源于生活,服務(wù)于實踐。在課堂教學(xué)的引入、例題的講解和課外知識的拓展部分,都介紹了與指數(shù)函數(shù)息息相關(guān)的生活問題,力圖使學(xué)生了解到數(shù)學(xué)的基礎(chǔ)學(xué)科作用,培養(yǎng)學(xué)生的數(shù)學(xué)應(yīng)用意識。

  三、學(xué)法指導(dǎo)

  本節(jié)課是在學(xué)習(xí)完“指數(shù)”的概念和運算后編排的,針對學(xué)生實際情況,我主要在以下幾個方面做了嘗試:

  1.再現(xiàn)原有認知結(jié)構(gòu)。在引入兩個生活實例后,請學(xué)生回憶有關(guān)指數(shù)的概念,幫助學(xué)生再現(xiàn)原有認知結(jié)構(gòu),為理解指數(shù)函數(shù)的概念做好準備。

  2.領(lǐng)會常見數(shù)學(xué)思想方法。在借助圖象研究指數(shù)函數(shù)的性質(zhì)時會遇到分類討論、數(shù)形結(jié)合等基本數(shù)學(xué)思想方法,這些方法將會貫穿整個高中的數(shù)學(xué)學(xué)習(xí)。

  3.在互相交流和自主探究中獲得發(fā)展。在生活實例的課堂導(dǎo)入、指數(shù)函數(shù)的性質(zhì)研究、例題與訓(xùn)練、課內(nèi)小節(jié)等教學(xué)環(huán)節(jié)中都安排了學(xué)生的討論、分組、交流等活動,讓學(xué)生變被動的接受和記憶知識為在合作學(xué)習(xí)的樂趣中主動地建構(gòu)新知識的框架和體系,從而完成知識的內(nèi)化過程。

  4.注意學(xué)習(xí)過程的循序漸進。在概念、圖象、性質(zhì)、應(yīng)用、拓展的過程中按照先易后難的順序?qū)訉舆f進,讓學(xué)生感到有挑戰(zhàn)、有收獲,跳一跳,夠得著,不同難度的題目設(shè)計將盡可能照顧到課堂學(xué)生的個體差異。

  四、程序設(shè)計

  在設(shè)計本節(jié)課的教學(xué)過程中,本著遵循學(xué)生的認知規(guī)律、讓學(xué)生去經(jīng)歷知識的形成與發(fā)展過程的原則,我設(shè)計了如下的教學(xué)程序,啟發(fā)學(xué)生逐步發(fā)現(xiàn)和認識指數(shù)函數(shù)的圖象和性質(zhì)。

  1.創(chuàng)設(shè)情景、導(dǎo)入新課

  教師活動:

 、儆秒娔X展示兩個實例,第一個是計算機價格下降問題,第二個是生物中細胞分裂的例子,

 、趯W(xué)生按奇數(shù)列、偶數(shù)列分組。

  學(xué)生活動:

 、俜謩e寫出計算機價格y與經(jīng)過月份x的關(guān)系式和細胞個數(shù)y與分裂次數(shù)x的關(guān)系式,并互相交流;

 、诨貞浿笖(shù)的概念;

 、蹥w納指數(shù)函數(shù)的概念;

 、芊治龀鰧χ笖(shù)函數(shù)底數(shù)討論的必要性以及分類的方法。

  設(shè)計意圖:通過生活實例激發(fā)學(xué)生的學(xué)習(xí)動機,,掃清由概念不清而造成的知識障礙,培養(yǎng)學(xué)生思維的主動性, 為突破難點做好準備;

  2.啟發(fā)誘導(dǎo)、探求新知

  教師活動:

 、俳o出兩個簡單的指數(shù)函數(shù)并要求學(xué)生畫它們的圖象②在準備好的小黑板上規(guī)范地畫出這兩個指數(shù)函數(shù)的圖象③板書指數(shù)函數(shù)的性質(zhì)。

  學(xué)生活動:

 、佼嫵鰞蓚簡單的指數(shù)函數(shù)圖象

 、诮涣、討論

 、蹥w納出研究函數(shù)性質(zhì)涉及的方面

  ④總結(jié)出指數(shù)函數(shù)的性質(zhì)。

  設(shè)計意圖:讓學(xué)生動手作簡單的指數(shù)函數(shù)的圖象對深刻理解本節(jié)課的內(nèi)容有著一定的促進作用,在學(xué)生完成基本作圖之后,教師再利用課前已列表、建立坐標系的小黑板展示準確的作圖方法,達到進一步規(guī)范學(xué)生的作圖習(xí)慣的目的,然后借助“函數(shù)作圖器”用多媒體將指數(shù)函數(shù)的圖象推廣到一般情況,學(xué)生就會很自然的通過觀察圖象總結(jié)出指數(shù)函數(shù)的性質(zhì),同時對于底數(shù)的討論也就變得順理成章。

  3.鞏固新知、反饋回授

  教師活動:

 、侔鍟1

 、诎鍟2第一問

 、劢榻B有關(guān)考古的拓展知識。

高中數(shù)學(xué)說課稿 篇10

  高三第一階段復(fù)習(xí),也稱“知識篇”。在這一階段,學(xué)生重溫高一、高二所學(xué)課程,全面復(fù)習(xí)鞏固各個知識點,熟練掌握基本方法和技能;然后站在全局的高度,對學(xué)過的知識產(chǎn)生全新認識。在高一、高二時,是以知識點為主線索,依次傳授講解的,由于后面的相關(guān)知識還沒有學(xué)到,不能進行縱向聯(lián)系,所以,學(xué)的知識往往是零碎和散亂,而在第一輪復(fù)習(xí)時,以章節(jié)為單位,將那些零碎的、散亂的知識點串聯(lián)起來,并將他們系統(tǒng)化、綜合化,把各個知識點融會貫通。對于普通高中的學(xué)生,第一輪復(fù)習(xí)更為重要,我們希望能做高考試題中一些基礎(chǔ)題目,必須側(cè)重基礎(chǔ),加強復(fù)習(xí)的針對性,講求實效。

  一、內(nèi)容分析說明

  1、本小節(jié)內(nèi)容是初中學(xué)習(xí)的多項式乘法的繼續(xù),它所研究的二項式的乘方的展開式,與數(shù)學(xué)的其他部分有密切的聯(lián)系:

 。1)二項展開式與多項式乘法有聯(lián)系,本小節(jié)復(fù)習(xí)可對多項式的變形起到復(fù)習(xí)深化作用。

 。2)二項式定理與概率理論中的二項分布有內(nèi)在聯(lián)系,利用二項式定理可得到一些組合數(shù)的恒等式,因此,本小節(jié)復(fù)習(xí)可加深知識間縱橫聯(lián)系,形成知識網(wǎng)絡(luò)。

 。3)二項式定理是解決某些整除性、近似計算等問題的一種方法。

  2、高考中二項式定理的試題幾乎年年有,多數(shù)試題的難度與課本習(xí)題相當(dāng),是容易題和中等難度的

  試題,考察的題型穩(wěn)定,通常以選擇題或填空題出現(xiàn),有時也與應(yīng)用題結(jié)合在一起求某些數(shù)、式的

  近似值。

  二、學(xué)校情況與學(xué)生分析

 。1)我校是一所鎮(zhèn)普通高中,學(xué)生的基礎(chǔ)不好,記憶力較差,反應(yīng)速度慢,普遍感到數(shù)學(xué)難學(xué)。但大部分學(xué)生想考大學(xué),主觀上有學(xué)好數(shù)學(xué)的愿望。

 。2)授課班是政治、地理班,學(xué)生聽課積極性不高,聽課率低(60﹪),注意力不能持久,不能連續(xù)從事某項數(shù)學(xué)活動。課堂上喜歡輕松詼諧的氣氛,大部分能機械的模仿,部分學(xué)生好記筆記。

  三、教學(xué)目標

  復(fù)習(xí)課二項式定理計劃安排兩個課時,本課是第一課時,主要復(fù)習(xí)二項展開式和通項。根據(jù)歷年高考對這部分的考查情況,結(jié)合學(xué)生的特點,設(shè)定如下教學(xué)目標:

  1、知識目標:(1)理解并掌握二項式定理,從項數(shù)、指數(shù)、系數(shù)、通項幾個特征熟記它的展開式。

  (2)會運用展開式的通項公式求展開式的特定項。

  2、能力目標:(1)教給學(xué)生怎樣記憶數(shù)學(xué)公式,如何提高記憶的持久性和準確性,從而優(yōu)化記憶品質(zhì)。記憶力是一般數(shù)學(xué)能力,是其它能力的基礎(chǔ)。

  (2)樹立由一般到特殊的解決問題的意識,了解解決問題時運用的數(shù)學(xué)思想方法。

  3、情感目標:通過對二項式定理的復(fù)習(xí),使學(xué)生感覺到能掌握數(shù)學(xué)的部分內(nèi)容,樹立學(xué)好數(shù)學(xué)的信心。有意識地讓學(xué)生演練一些歷年高考試題,使學(xué)生體驗到成功,在明年的高考中,他們也能得分。

  四、教學(xué)過程

  1、知識歸納

  (1)創(chuàng)設(shè)情景:①同學(xué)們,還記得嗎? 、 、 展開式是什么?

 、趯W(xué)生一起回憶、老師板書。

  設(shè)計意圖:①提出比較容易的問題,吸引學(xué)生的注意力,組織教學(xué)。

 、跒閷W(xué)生能回憶起二項式定理作鋪墊:激活記憶,引起聯(lián)想。

 。2)二項式定理:①設(shè)問 展開式是什么?待學(xué)生思考后,老師板書

  = C an+C an-1b1+…+C an-rbr+…+C bn(n∈N*)

  ②老師要求學(xué)生說出二項展開式的特征并熟記公式:共有 項;各項里a的指數(shù)從n起依次減小1,直到0為止;b的指數(shù)從0起依次增加1,直到n為止。每一項里a、b的指數(shù)和均為n。

 、垤柟叹毩(xí) 填空

  設(shè)計意圖:①教給學(xué)生記憶的方法,比較分析公式的特點,記規(guī)律。

 、谧冇霉,熟悉公式。

  (3) 展開式中各項的系數(shù)C , C , C ,… , 稱為二項式系數(shù).

  展開式的通項公式Tr+1=C an-rbr , 其中r= 0,1,2,…n表示展開式中第r+1項.

  2、例題講解

  例1求 的展開式的第4項的二項式系數(shù),并求的第4項的系數(shù)。

  講解過程

  設(shè)問:這里 ,要求的第4項的有關(guān)系數(shù),如何解決?

  學(xué)生思考計算,回答問題;

  老師指明①當(dāng)項數(shù)是4時, ,此時 ,所以第4項的二項式系數(shù)是 ,

 、诘4項的系數(shù)與的第4項的二項式系數(shù)區(qū)別。

  板書

  解:展開式的第4項

  所以第4項的系數(shù)為 ,二項式系數(shù)為 。

  選題意圖:①利用通項公式求項的系數(shù)和二項式系數(shù);②復(fù)習(xí)指數(shù)冪運算。

  例2 求 的展開式中不含的 項。

  講解過程

  設(shè)問:①不含的 項是什么樣的項?即這一項具有什么性質(zhì)?

 、趩栴}轉(zhuǎn)化為第幾項是常數(shù)項,誰能看出哪一項是常數(shù)項?

  師生討論 “看不出哪一項是常數(shù)項,怎么辦?”

  共同探討思路:利用通項公式,列出項數(shù)的方程,求出項數(shù)。

  老師總結(jié)思路:先設(shè)第 項為不含 的項,得 ,利用這一項的指數(shù)是零,得到關(guān)于 的方程,解出 后,代回通項公式,便可得到常數(shù)項。

  板書

  解:設(shè)展開式的第 項為不含 項,那么

  令 ,解得 ,所以展開式的第9項是不含的 項。

  因此 。

  選題意圖:①鞏固運用展開式的通項公式求展開式的特定項,形成基本技能。

  ②判斷第幾項是常數(shù)項運用方程的思想;找到這一項的項數(shù)后,實現(xiàn)了轉(zhuǎn)化,體現(xiàn)轉(zhuǎn)化的數(shù)學(xué)思想。

  例3求 的展開式中, 的系數(shù)。

  解題思路:原式局部展開后,利用加法原理,可得到展開式中的 系數(shù)。

  板書

  解:由于 ,則 的展開式中 的系數(shù)為 的展開式中 的系數(shù)之和。

  而 的展開式含 的項分別是第5項、第4項和第3項,則 的展開式中 的系數(shù)分別是: 。

  所以 的展開式中 的系數(shù)為

  例4 如果在( + )n的展開式中,前三項系數(shù)成等差數(shù)列,求展開式中的有理項.

  解:展開式中前三項的系數(shù)分別為1, , ,

  由題意得2× =1+ ,得n=8.

  設(shè)第r+1項為有理項,T =C · ·x ,則r是4的倍數(shù),所以r=0,4,8.

  有理項為T1=x4,T5= x,T9= .

  3、課堂練習(xí)

  1.(20xx年江蘇,7)(2x+ )4的展開式中x3的系數(shù)是

  A.6B.12 C.24 D.48

  解析:(2x+ )4=x2(1+2 )4,在(1+2 )4中,x的系數(shù)為C ·22=24.

  答案:C

  2.(20xx年全國Ⅰ,5)(2x3- )7的展開式中常數(shù)項是

  A.14 B.14 C.42 D.-42

  解析:設(shè)(2x3- )7的展開式中的第r+1項是T =C (2x3) (- )r=C 2 ·

 。ǎ1)r·x ,

  當(dāng)- +3(7-r)=0,即r=6時,它為常數(shù)項,∴C (-1)6·21=14.

  答案:A

  3.(20xx年湖北,文14)已知(x +x )n的展開式中各項系數(shù)的和是128,則展開式中x5的系數(shù)是_____________.(以數(shù)字作答)

  解析:∵(x +x )n的展開式中各項系數(shù)和為128,

  ∴令x=1,即得所有項系數(shù)和為2n=128.

  ∴n=7.設(shè)該二項展開式中的r+1項為T =C (x ) ·(x )r=C ·x ,

  令 =5即r=3時,x5項的系數(shù)為C =35.

  答案:35

  五、課堂教學(xué)設(shè)計說明

  1、這是一堂復(fù)習(xí)課,通過對例題的研究、討論,鞏固二項式定理通項公式,加深對項的系數(shù)、項的二項式系數(shù)等有關(guān)概念的理解和認識,形成求二項式展開式某些指定項的基本技能,同時,要培養(yǎng)學(xué)生的運算能力,邏輯思維能力,強化方程的思想和轉(zhuǎn)化的思想。

  2、在例題的選配上,我設(shè)計了一定梯度。第一層次是給出二項式,求指定的項,即項數(shù)已知,只需直接代入通項公式即可(例1);第二層次(例2)則需要自己創(chuàng)造代入的條件,先判斷哪一項為所求,即先求項數(shù),利用通項公式中指數(shù)的關(guān)系求出,此后轉(zhuǎn)化為第一層次的問題。第三層次突出數(shù)學(xué)思想的滲透,例3需要變形才能求某一項的系數(shù),恒等變形是實現(xiàn)轉(zhuǎn)化的手段。在求每個局部展開式的某項系數(shù)時,又有分類討論思想的指導(dǎo)。而例4的設(shè)計是想增加題目的綜合性,求的n過程中,運用等差數(shù)列、組合數(shù)n等知識,求出后,有化歸為前面的問題。

  六、個人見解

【關(guān)于高中數(shù)學(xué)說課稿范文集合十篇】相關(guān)文章:

高中數(shù)學(xué)說課稿范文集合十篇08-16

關(guān)于高中數(shù)學(xué)說課稿范文匯編十篇08-19

關(guān)于高中數(shù)學(xué)說課稿范文集錦十篇08-18

關(guān)于高中數(shù)學(xué)說課稿范文錦集十篇08-15

關(guān)于高中數(shù)學(xué)說課稿范文集合五篇08-14

關(guān)于高中數(shù)學(xué)說課稿范文集合9篇08-13

關(guān)于高中數(shù)學(xué)說課稿范文集合九篇08-12

關(guān)于高中數(shù)學(xué)說課稿范文集合8篇08-10

有關(guān)高中數(shù)學(xué)說課稿范文集合十篇08-19