實用的高中數學說課稿范文錦集7篇
作為一名老師,編寫說課稿是必不可少的,借助說課稿我們可以快速提升自己的教學能力。那么什么樣的說課稿才是好的呢?下面是小編幫大家整理的高中數學說課稿7篇,供大家參考借鑒,希望可以幫助到有需要的朋友。
高中數學說課稿 篇1
各位老師:
今天我說課的題目是《輸入、輸出語句和賦值語句》,內容選自于新課程人教A版必修3第一章第二節(jié),課時安排為一個課時。下面我將從教材分析、教學目標分析、教學方法與手段分析、教學過程分析等四大方面來闡述我對這節(jié)課的分析和設計:
一、教材分析
1.教材所處的地位和作用
我們用自然語言或程序框圖描述的算法,但是計算機是無法“看得懂,聽得見”的。因此還需要將算法用計算機能夠理解的程序設計語言翻譯成計算機程序。程序設計語言有很多種。為了實現算法中的三種基本的邏輯結構:順序結構、條件結構和循環(huán)結構,各種程序設計語言中都包含下列基本的算法語句:輸入語句、輸出語句、賦值語句、條件語句和循環(huán)語句.。而我們今天所要學習的是前三種算法語句,它們基本上是對應于算法中的順序結構的。
2.教學的重點和難點
重點:正確理解輸入語句、輸出語句、賦值語句的作用。
難點:準確寫出輸入語句、輸出語句、賦值語句。
二、教學目標分析
1.知識與技能目標:
。1)正確理解輸入語句、輸出語句、賦值語句的結構。
(2)會寫一些簡單的程序。
。3)掌握賦值語句中的“=”的作用。
2.過程與方法目標:
。1)讓學生充分地感知、體驗應用計算機解決數學問題的方法;并能初步操作、模仿。
。2)通過模仿,操作,探索的過程,體會算法的基本思想和基本語句的用途,提高學生應用數學軟件的能力.
3.情感,態(tài)度和價值觀目標
(1) 通過對三種語句的了解和實現,發(fā)展有條理的思考,表達的能力,提高邏輯思維能力.
(2) 學習算法語句,幫助學生利用計算機軟件實現算法,活躍思維,提高學生的數學素養(yǎng).
(3) 結合計算機軟件的應用, 增強應用數學的意識,在計算機上實現算法讓學生體會成功喜悅.
三、教學方法與手段分析
1.教學方法:引導與合作交流相結合,學生在體會三種語句結構格式的過程中,讓學生積極參與,討論交流,充分挖掘三種算法語句的格式特點及意義,在分析具體問題的過程中總結三種算法語句的思想與特征.
2.教學手段:運用計算機、圖形計算器輔助教學
四、教學過程分析
1. 創(chuàng)設情境(約5分鐘)
在課的開始,我要求學生們舉出一些在日常生活中所應用到的有關計算機的例子,如:聽MP3,看電影,玩游戲,打字排版,畫卡通畫,處理數據等等,并告訴他們在現代社會里,計算機已經成為人們日常生活和工作不可缺少的工具,然后接著問他們知不知道計算機到底是怎樣工作的?通過這個問題引出我們今天所要學習的內容。(板出課題)
在這個過程中,我讓學生們將課本學習的內容與現實生活聯系在了一起,這樣能夠激起他們對接下來的所要學習內容的興趣,為整節(jié)課的學習打下一個良好的基礎。
2.探究新知(約15分鐘)
這里我先給出一個題目:用描點法作出函數
的圖象,用描點法作函數的圖象時,需要先求出自變量與函數的對應值。編寫程序,分別計算當
時的函數值。(程序由我在課前準備好,教學中直接調用運行)
程序:INPUT“x=”;x 輸入語句
y=x^3+3*x^2-24*x+30 賦值語句
PRINT x 輸出語句
PRINT y 輸出語句
END
。▽W生們先看,再跟著做,先不必深究該程序如何得來,只要模仿編寫程序,通過運行自己編寫的程序發(fā)現問題所在,進一步提高學生的模仿能力)
之后,我向學生們提問:在這個程序中,他們覺得哪些是輸入語句、輸出語句和賦值語句?(同學們互相交流、議論、猜想、概括出結論。提示:“input”和“print”的中文意思,還要請學生們注意到在賦值語句中的賦值號“=”與數學中的等號意義不同。)
此過程由老師引導,學生們自己討論并總結出什么是輸入語句、輸出語句和賦值語句,這樣比老師直接地將知識傳授給他們,學習的效果更佳,同時也鍛煉了學生們思考問題的能力和概括能力,激發(fā)學習興趣。
然后給出一個思考題:在1.1.2中程序框圖中的輸入框,輸出框的內容怎樣用輸入語句、輸出語句來表達?(學生討論、交流想法,然后請學生作答)這樣可以及時應用剛剛學習的內容,并可以將前后所學知識聯系起來。
3.例題精析(約12分鐘)
在本環(huán)節(jié)中我為學生們準備了三道例題,這三道例題均選自課本的例2、例3和例4,學生通過這幾道例題的講解,結合計算機程序上機運用,可以掌握在程序設計語言中的前三種算法語句,體會到他們在程序中的意義和作用。
4.課堂精練(約4分鐘)
P15 練習 1.
提問:如果要求輸入一個攝氏溫度,輸出其相應的華氏溫度,又該如何設計程序?(學生課后思考,討論完成)通過提問啟發(fā)學生們思考,發(fā)散思維。
5.課堂小結(約5分鐘)
、泡斎胝Z句、輸出語句和賦值語句的結構特點及聯系
、茟幂斎胝Z句,輸出語句,賦值語句編寫一些簡單的程序解決數學問題
⑶ 賦值語句中“=”的作用及應用
、染幊桃话愕牟襟E:先寫出算法,再進行編程。
6.布置作業(yè)
P23 習題1.2 A組 1(2)、2
[設計意圖]課后作業(yè)的布置是為了檢驗學生對本節(jié)課內容的理解和運用程度以及實際接受情況,并促使學生進一步鞏固和掌握所學內容。
7.板書設計
高中數學說課稿 篇2
一、說教材:
1、教材的地位與作用
導數是微積分的核心概念之一,它為研究函數提供了有效的方法. 在前面幾節(jié)課里學生對導數的概念已經有了充分的認識,本節(jié)課教材從形的角度即割線入手,用形象直觀的“逼近”方法定義了切線,獲得導數的幾何意義,更有利于學生理解導數概念的本質內涵. 這節(jié)課可以利用幾何畫板進行動畫演示,讓學生通過觀察、思考、發(fā)現、思維、運用形成完整概念. 通過本節(jié)的學習,可以幫助學生更好的體會導數是研究函數的單調性、變化快慢等性質最有效的工具,是本章的關鍵內容。
2、教學的重點、難點、關鍵
教學重點:導數的幾何意義、切線方程的求法以及“數形結合,逼近”的思想方法。
教學難點:理解導數的幾何意義的本質內涵
1) 從割線到切線的過程中采用的逼近方法;
2) 理解導數的概念,將多方面的意義聯系起來,例如,導數反映了函數f(x)在點x附近的變化快慢,導數是曲線上某點切線的斜率,等等.
二、說教學目標:
根據新課程標準的要求、學生的認知水平,確定教學目標如下:
1、知識與技能 :
通過實驗探求理解導數的幾何意義,理解曲線在一點的切線的概念,會求簡單函數在某點的切線方程。
過程與方法:
經歷切線定義的形成過程,培養(yǎng)學生分析、抽象、概括等思維能力;體會導數的思想及內涵,完善對切線的認識和理解
通過逼近、數形結合思想的具體運用,使學生達到思維方式的遷移,了解科學的思維方法。
3、情感態(tài)度與價值觀:
滲透逼近、數形結合、以直代曲等數學思想,激發(fā)學生學習興趣,引導學生領悟特殊與一般、有限與無限,量變與質變的辯證關系,感受數學的統(tǒng)一美,意識到數學的應用價值
三、說教法與學法
對于直線來說它的導數就是它的斜率,學生會很自然的思考導數在函數圖像上是不是有很特殊的幾何意義。而且剛剛學過了圓錐曲線,學生對曲線的切線的概念也有了一些認識,基于以上學情分析,我確定下列教法:
教法:從圓的切線的定義引入本課,再引導學生討論一般曲線的切線的定義,通過幾何畫板的動畫演示,得出曲線的切線的“逼近”法的定義.同樣通過幾何畫板的實驗觀察得到導數的幾何意義和直觀感知“逼近”的數學思想.因此,我采用實驗觀察法、探究性研究教學和信息技術輔助教學法相結合,以突出重點和突破難點;
學法:為了發(fā)揮學生的主觀能動性,提高學生的綜合能力,本節(jié)課采取了
自主 、合作、探究的學習方法。
教具: 幾何畫板、幻燈片
四、說教學程序
1.創(chuàng)設情境
學生活動——問題系列
問題1 平面幾何中我們是怎樣判斷直線是否是圓的割線或切線的呢?
問題2 如圖直線l是曲線C的切線嗎?
(1)與 (2)與 還有直線與雙曲線的位置關系
問題3 那么對于一般的曲線,切線該如何定義呢?
【設計意圖】:通過類比構建認知沖突。
學生活動——復習回顧
導數的定義
【設計意圖】:從理論和知識基礎兩方面為本節(jié)課作鋪墊。
2.探索求知
學生活動——試驗探究
問一;求導數的步驟是怎樣的?
第一步:求平均變化率;第二步:當趨近于0時,平均變化率無限趨近于的常數就是。
【設計意圖】:這是從“數”的角度描述導數,為探究導數的幾何意義做準備。
問二;你能借助圖像說說平均變化率表示什么嗎?請在函數圖像中畫出來。
【設計意圖】:通過學生動手實踐得到平均變化率表示割線PQ的斜率。
問三;在的過程中,你能描述一下割線PQ的變化情況嗎?請在圖像中畫出來。
【設計意圖】:分別從“數”和“形”的角度描述的過程情況。從數的角度看,,Q();從形的角度看, 的過程中,Q點向P點無限趨近,割線PQ趨近于確定的位置,這個位置的直線叫做曲線在 處的切線。
探究一:學生通過幾何畫板的演示觀察割線的變化趨勢,教師引導給出一般曲線的切線定義。
【設計意圖】: 借助多媒體教學手段引導學生發(fā)現導數的幾何意義,使問題變得直觀,易于突破難點;學生在過程中,可以體會逼近的思想方法。能夠同時從數與形兩個角度強化學生對導數概念的理解。
問四;你能從上述過程中概括出函數在處的導數的幾何意義嗎?
【設計意圖】:引導學生發(fā)現并說出:,割線PQ切線PT,所以割線
PQ的斜率切線PT的斜率。因此,=切線PT的斜率。
五、教學評價
1、通過學生參加活動是否積極主動,能否與他人合作探索,對學生的學習過程評價;
2、通過學生對方法的選擇,對學生的學習能力評價;
3、通過練習、課后作業(yè),對學生的學習效果評價.
4、教學中,學生以研究者的身份學習,在問題解決的過程中,通過自身的體驗對知識的認識從模糊到清晰,從直觀感悟到精確掌握;
5、本節(jié)課設計目標力求使學生體會微積分的基本思想,感受近似與精確的統(tǒng)一,運動和靜止的統(tǒng)一,感受量變到質變的轉化。希望利用這節(jié)課滲透辨證法的思想精髓.
高中數學說課稿 篇3
尊敬的各位專家、評委:
大家好!
我是盧龍縣木井中學數學教師xx,我今天說課的題目是:人教A版普通高中課程標準實驗教科書 數學必修5第一章第一節(jié)的第一課時《正弦定理》,依據新課程標準對教材的要求,結合我對教材的理解,我將從以下幾個方面說明我的設計和構思。
一、教材分析
“解三角形”既是高中數學的基本內容,又有較強的應用性,在這次課程改革中,被保留下來,并獨立成為一章。這部分內容從知識體系上看,應屬于三角函數這一章,從研究方法上看,也可以歸屬于向量應用的一方面。從某種意義講,這部分內容是用代數方法解決幾何問題的典型內容之一。而本課“正弦定理”,作為單元的起始課,是在學生已有的三角函數及向量知識的基礎上,通過對三角形邊角關系作量化探究,發(fā)現并掌握正弦定理(重要的解三角形工具),通過這一部分內容的學習,讓學生從“實際問題”抽象成“數學問題”的建模過程中,體驗 “觀察——猜想——證明——應用”這一思維方法,養(yǎng)成大膽猜想、善于思考的品質和勇于求真的精神。同時在解決問題的過程中,感受數學的力量,進一步培養(yǎng)學生對數學的學習興趣和“用數學”的意識。
二、學情分析
我所任教的學校是我縣一所農村普通中學,大多數學生基礎薄弱,對“一些重要的數學思想和數學方法”的應用意識和技能還不高。但是,大多數學生對數學的興趣較高,比較喜歡數學,尤其是象本節(jié)課這樣與實際生活聯系比較緊密的內容,相信學生能夠積極配合,有比較不錯的表現。
三、教學目標
1、知識和技能:在創(chuàng)設的問題情境中,引導學生發(fā)現正弦定理的內容,推證正弦定理及簡單運用正弦定理解決一些簡單的解三角形問題。
過程與方法:學生參與解題方案的探索,嘗試應用觀察——猜想——證明——應用”等思想方法,尋求最佳解決方案,從而引發(fā)學生對現實世界的一些數學模型進行思考。
情感、態(tài)度、價值觀:培養(yǎng)學生合情合理探索數學規(guī)律的數學思想方法,通過平面幾何、三角形函數、正弦定理、向量的數量積等知識間的聯系來體現事物之間的普遍聯系與辯證統(tǒng)一。同時,通過實際問題的探討、解決,讓學生體驗學習成就感,增強數學學習興趣和主動性,鍛煉探究精神。樹立“數學與我有關,數學是有用的,我要用數學,我能用數學”的理念。
2、教學重點、難點
教學重點:正弦定理的發(fā)現與證明;正弦定理的簡單應用。
教學難點:正弦定理證明及應用。
四、教學方法與手段
為了更好的達成上面的教學目標,促進學習方式的轉變,本節(jié)課我準備采用“問題教學法”,即由教師以問題為主線組織教學,利用多媒體和實物投影儀等教學手段來激發(fā)興趣、突出重點,突破難點,提高課堂效率,并引導學生采取自主探究與相互合作相結合的學習方式參與到問題解決的過程中去,從中體驗成功與失敗,從而逐步建立完善的認知結構。
五、教學過程
為了很好地完成我所確定的教學目標,順利地解決重點,突破難點,同時本著貼近生活、貼近學生、貼近時代的原則,我設計了這樣的教學過程:
(一)創(chuàng)設情景,揭示課題
問題1:寧靜的夜晚,明月高懸,當你仰望夜空,欣賞這美好夜色的時候,會不會想要知道:那遙不可及的月亮離我們究竟有多遠呢?
1671年兩個法國天文學家首次測出了地月之間的距離大約為 385400km,你知道他們當時是怎樣測出這個距離的嗎?
問題2:在現在的高科技時代,要想知道某座山的高度,沒必要親自去量,只需水平飛行的飛機從山頂一過便可測出,你知道這是為什么嗎?還有,交通警察是怎樣測出正在公路上行駛的汽車的速度呢?要想解決這些問題, 其實并不難,只要你學好本章內容即可掌握其原理。(板書課題《解三角形》)
[設計說明]引用教材本章引言,制造知識與問題的沖突,激發(fā)學生學習本章知識的興趣。
(二)特殊入手,發(fā)現規(guī)律
問題3:在初中,我們已經學習了《銳角三角函數和解直角三角形》這一章,老師想試試你的實力,請你根據初中知識,解決這樣一個問題。在Rt⊿ABC中sinA= ,sinB= ,sinC= ,由此,你能把這個直角三角形中的所有的邊和角用一個表達式表示出來嗎?
引導啟發(fā)學生發(fā)現特殊情形下的正弦定理
(三)類比歸納,嚴格證明
問題4:本題屬于初中問題,而且比較簡單,不夠刺激,現在如果我為難為難你,讓你也當一回老師,如果有個學生把條件中的Rt⊿ABC不小心寫成了銳角⊿ABC,其它沒有變,你說這個結論還成立嗎?
[設計說明]此時放手讓學生自己完成,如果感覺自己解決有困難,學生也可以前后桌或同桌結組研究,鼓勵學生用不同的方法證明這個結論,在巡視的過程中讓不同方法的學生上黑板展示,如果沒有用向量的學生,教師引導提示學生能否用向量完成證明。
問題5:好根據剛才我們的研究,說明這一結論在直角三角形和銳角三角形中都成立,于是,我們是否有了更為大膽的猜想,把條件中的銳角⊿ABC改為角鈍角⊿ABC,其它不變,這個結論仍然成立?我們光說成立不行,必須有能力進行嚴格的理論證明,你有這個能力嗎?下面我希望你能用實力告訴我,開始。(啟發(fā)引導學生用多種方法加以研究證明,尤其是向量法,在下節(jié)余弦定理的證明中還要用,因此務必啟發(fā)學生用向量法完成證明。)
[設計說明] 放手給學生實踐的機會和時間,使學生真正的參與到問題解決的過程中去,讓學生在學數學的實踐中去感悟和提高數學的思維方法和思維習慣。同時,考慮到有部分同學基礎較差,考個人或小組可能無法完成探究任務,教師在學生動手的同時,通過巡查,讓提前證明出結論的同學上黑板完成,這樣做一方面肯定了先完成的同學的先進性,鍛煉了上黑板同學的解題過程的書寫規(guī)范性,同時,也讓從無從下手的同學有個參考,不至于閑呆著浪費時間。
問題6:由此,你能否得到一個更一般的結論?你能用比較精煉的語言把它概括一下嗎?好,這就是我們這節(jié)課研究的主要內容,大名鼎鼎的正弦定理(此時板書課題并用紅色粉筆標示出正弦定理內容)
教師講解:告訴大家,其實這個大名鼎鼎的正弦定理是由伊朗著名的天文學家阿布爾─威發(fā)﹝940-998﹞首先發(fā)現與證明的。中亞細亞人阿爾比魯尼﹝973-1048﹞給三角形的正弦定理作出了一個證明。也有說正弦定理的證明是13世紀的阿塞拜疆人納速拉丁在系統(tǒng)整理前人成就的基礎上得出的。不管怎樣,我們說在1000年以前,人們就發(fā)現了這個充滿著數學美的結論,不能不說也是人類數學史上的一個奇跡。老師希望21世紀的你能在今后的學習中也研究出一個被后人景仰的某某定理來,到那時我也就成了數學家的老師了。當然,老師的希望能否變成現實,就要看大家的了。
[設計說明] 通過本段內容的講解,滲透一些數學史的內容,對學生不僅有數學美得熏陶,更能激發(fā)學生學習科學文化知識的熱情。
(四)強化理解,簡單應用
下面請大家看我們的教材2-3頁到例題1上邊,并自學解三角形定義。
[設計說明] 讓學生看看書,放慢節(jié)奏,有利于學生消化和吸收剛才的內容,同時教師可以利用這段時間對個別學困生進行輔導,以減少掉隊的同學數量,同時培養(yǎng)學生養(yǎng)成自覺看書的好習慣。
我們學習了正弦定理之后,你覺得它有什么應用?在三角形中他能解決那些問題呢? 我們先小試牛刀,來一個簡單的問題:
問題7:(教材例題1)⊿ABC中,已知A=30,B=75,a=40cm,解三角形。
(本題簡單,找兩位同學上黑板完成,其他同學在底下練習本上完成,同學可以小聲音討論,完成后教師根據學生實踐中發(fā)現的問題給予必要的講評)
[設計說明] 充分給學生自己動手的時間和機會,由于本題是唯一解,為將來學生感悟什么情況下三角形有唯一解創(chuàng)造條件。
強化練習
讓全體同學限時完成教材4頁練習第一題,找兩位同學上黑板。
問題8:(教材例題2)在⊿ABC中a=20cm,b=28cm,A=30,解三角形。
[設計說明]例題2較難,目的是使學生明確,利用正弦定理有兩種可能,同時,引導學生對比例題1研究,在什么情況下解三角形有唯一解?為什么?對學有余力的同學鼓勵他們自學探究與發(fā)現教材8頁得內容:《解三角形的進一步討論》
(五)小結歸納,深化拓展
1、正弦定理
2、正弦定理的證明方法
3、正弦定理的應用
4、涉及的數學思想和方法。
[設計說明] 師生共同總結本節(jié)課的收獲的同時,引導學生學會自己總結,讓學生進一步回顧和體會知識的形成、發(fā)展、完善的過程。
(六)布置作業(yè),鞏固提高
1、教材10頁習題1.1A組第1題。
2、學有余力的同學探究10頁B組第1題,體會正弦定理的其他證明方法。
證明:設三角形外接圓的半徑是R,則a=2RsinA,b=2RsinB, c=2RsinC
[設計說明] 對不同水平的學生設計不同梯度的作業(yè),尊重學生的個性差異,有利于因材施教的教學原則的貫徹。
高中數學說課稿 篇4
一、教材分析
1.《指數函數》在教材中的地位、作用和特點
《指數函數》是人教版高中數學(必修)第一冊第二章“函數”的第六節(jié)內容,是在學習了《指數》一節(jié)內容之后編排的。通過本節(jié)課的學習,既可以對指數和函數的概念等知識進一步鞏固和深化,又可以為后面進一步學習對數、對數函數尤其是利用互為反函數的圖象間的關系來研究對數函數的性質打下堅實的概念和圖象基礎,又因為《指數函數》是進入高中以后學生遇到的第一個系統(tǒng)研究的函數,對高中階段研究對數函數、三角函數等完整的函數知識,初步培養(yǎng)函數的應用意識打下了良好的學習基礎,所以《指數函數》不僅是本章《函數》的重點內容,也是高中學段的主要研究內容之一,有著不可替代的重要作用。
此外,《指數函數》的知識與我們的日常生產、生活和科學研究有著緊密的聯系,尤其體現在細胞分裂、貸款利率的計算和考古中的年代測算等方面,因此學習這部分知識還有著廣泛的現實意義。本節(jié)內容的特點之一是概念性強,特點之二是凸顯了數學圖形在研究函數性質時的重要作用。
2.教學目標、重點和難點
通過初中學段的學習和高中對集合、函數等知識的系統(tǒng)學習,學生對函數和圖象的關系已經構建了一定的認知結構,主要體現在三個方面:
知識維度:對正比例函數、反比例函數、一次函數,二次函數等最簡單的函數概念和性質已有了初步認識,能夠從初中運動變化的角度認識函數初步轉化到從集合與對應的觀點來認識函數。
技能維度:學生對采用“描點法”描繪函數圖象的方法已基本掌握,能夠為研究《指數函數》的性質做好準備。
素質維度:由觀察到抽象的數學活動過程已有一定的體會,已初步了解了數形結合的思想。
鑒于對學生已有的知識基礎和認知能力的分析,根據《教學大綱》的要求,我確定本節(jié)課的教學目標、教學重點和難點如下:
(1)知識目標:
、僬莆罩笖岛瘮档母拍;
、谡莆罩笖岛瘮档膱D象和性質;
、勰艹醪嚼弥笖岛瘮档母拍罱鉀Q實際問題;
(2)技能目標:
、贊B透數形結合的基本數學思想方法
、谂囵B(yǎng)學生觀察、聯想、類比、猜測、歸納的能力;
(3)情感目標:
、袤w驗從特殊到一般的學習規(guī)律,認識事物之間的普遍聯系與相互轉化,培養(yǎng)學生用聯系的觀點看問題②通過教學互動促進師生情感,激發(fā)學生的學習興趣,提高學生抽象、概括、分析、綜合的能力
③領會數學科學的應用價值。
(4)教學重點:指數函數的圖象和性質。
(5)教學難點:指數函數的圖象性質與底數a的關系。
突破難點的關鍵:尋找新知生長點,建立新舊知識的聯系,在理解概念的基礎上充分結合圖象,利用數形結合來掃清障礙。
二、教法設計
由于《指數函數》這節(jié)課的特殊地位,在本節(jié)課的教法設計中,我力圖通過這一節(jié)課的教學達到不僅使學生初步理解并能簡單應用指數函數的知識,更期望能引領學生掌握研究初等函數圖象性質的一般思路和方法,為今后研究其它的函數做好準備,從而達到培養(yǎng)學生學習能力的目的,我根據自己對“誘思探究”教學模式和“情景式”教學模式的認識,將二者結合起來,主要突出了幾個方面:
1.創(chuàng)設問題情景.按照指數函數的在生活中的實際背景給出兩個實例,充分調動學生的學習興趣,激發(fā)學生的探究心理,順利引入課題,而這兩個例子又恰好為研究指數函數中底數大于1和底數大于0小于1的圖象做好了準備。
2.強化“指數函數”概念.引導學生結合指數的有關概念來歸納出指數函數的定義,并向學生指出指數函數的形式特點,請學生思考對于底數a是否需要限制,如不限制會有什么問題出現,這樣避免了學生對于底數a范圍分類的不清楚,也為研究指數函數的圖象做了“分類討論”的鋪墊。
3.突出圖象的作用.在數學學習過程中,圖形始終使我們需要借助的重要輔助手段。一位數學家曾經說過“數離形時少直觀,形離數時難入微”,而在研究指數函數的性質時,更是直接由圖象觀察得出性質,因此圖象發(fā)揮了主要的作用。
4.注意數學與生活和實踐的聯系.數學的本質是來源于生活,服務于實踐。在課堂教學的引入、例題的講解和課外知識的拓展部分,都介紹了與指數函數息息相關的生活問題,力圖使學生了解到數學的基礎學科作用,培養(yǎng)學生的數學應用意識。
三、學法指導
本節(jié)課是在學習完“指數”的概念和運算后編排的,針對學生實際情況,我主要在以下幾個方面做了嘗試:
1.再現原有認知結構。在引入兩個生活實例后,請學生回憶有關指數的概念,幫助學生再現原有認知結構,為理解指數函數的概念做好準備。
2.領會常見數學思想方法。在借助圖象研究指數函數的性質時會遇到分類討論、數形結合等基本數學思想方法,這些方法將會貫穿整個高中的數學學習。
3.在互相交流和自主探究中獲得發(fā)展。在生活實例的課堂導入、指數函數的性質研究、例題與訓練、課內小節(jié)等教學環(huán)節(jié)中都安排了學生的討論、分組、交流等活動,讓學生變被動的接受和記憶知識為在合作學習的樂趣中主動地建構新知識的框架和體系,從而完成知識的內化過程。
4.注意學習過程的循序漸進。在概念、圖象、性質、應用、拓展的過程中按照先易后難的順序層層遞進,讓學生感到有挑戰(zhàn)、有收獲,跳一跳,夠得著,不同難度的題目設計將盡可能照顧到課堂學生的個體差異。
四、程序設計
在設計本節(jié)課的教學過程中,本著遵循學生的認知規(guī)律、讓學生去經歷知識的形成與發(fā)展過程的原則,我設計了如下的教學程序,啟發(fā)學生逐步發(fā)現和認識指數函數的圖象和性質。
1.創(chuàng)設情景、導入新課
教師活動:
、儆秒娔X展示兩個實例,第一個是計算機價格下降問題,第二個是生物中細胞分裂的例子,
、趯W生按奇數列、偶數列分組。
學生活動:
、俜謩e寫出計算機價格y與經過月份x的關系式和細胞個數y與分裂次數x的關系式,并互相交流;
、诨貞浿笖档母拍;
、蹥w納指數函數的概念;
、芊治龀鰧χ笖岛瘮档讛涤懻摰谋匾砸约胺诸惖姆椒。
設計意圖:通過生活實例激發(fā)學生的學習動機,,掃清由概念不清而造成的知識障礙,培養(yǎng)學生思維的主動性, 為突破難點做好準備;
2.啟發(fā)誘導、探求新知
教師活動:
、俳o出兩個簡單的指數函數并要求學生畫它們的圖象②在準備好的小黑板上規(guī)范地畫出這兩個指數函數的圖象③板書指數函數的性質。
學生活動:
、佼嫵鰞蓚簡單的指數函數圖象
、诮涣、討論
、蹥w納出研究函數性質涉及的方面
④總結出指數函數的性質。
設計意圖:讓學生動手作簡單的指數函數的圖象對深刻理解本節(jié)課的內容有著一定的促進作用,在學生完成基本作圖之后,教師再利用課前已列表、建立坐標系的小黑板展示準確的作圖方法,達到進一步規(guī)范學生的作圖習慣的目的,然后借助“函數作圖器”用多媒體將指數函數的圖象推廣到一般情況,學生就會很自然的通過觀察圖象總結出指數函數的性質,同時對于底數的討論也就變得順理成章。
3.鞏固新知、反饋回授
教師活動:
、侔鍟1
、诎鍟2第一問
、劢榻B有關考古的拓展知識。
高中數學說課稿 篇5
各位評委老師好:今天我說課的題目是
是必修章第節(jié)的內容,我將以新課程標準的理念指導本節(jié)課的教學,從教材分析,教法學法,教學過程,教學評價四個方面加以說明。
一、 教材分析
是在學習了基礎上進一步研究 并為后面學習 做準備,在整個高中數學中起著承上啟下的作用,因此本節(jié)內容十分重要。
根據新課標要求和學生實際水平我制定以下教學目標
1、 知識能力目標:使學生理解掌握
2、 過程方法目標:通過觀察歸納抽象概括使學生構建領悟 數學思想,培養(yǎng) 能力
3、 情感態(tài)度價值觀目標:通過學習體驗數學的科學價值和應用價值,培養(yǎng)善于
觀察勇于思考的學習習慣和嚴謹 的科學態(tài)度
根據教學目標、本節(jié)特點和學生實際情況本節(jié)重點是 ,由于學生對 缺少感性認識,所以本節(jié)課的重點是
二、教法學法
根據教師主導地位和學生主體地位相統(tǒng)一的規(guī)律,我采用引導發(fā)現法為本節(jié)課的主要教學方法并借助多媒體為輔助手段。在教師點撥下,學生自主探索、合作交流來尋求解決問題的方法。
三、 教學過程
1、由……引入:
把教學內容轉化為具有潛在意義的問題,讓學生產生強烈的問題意識,使學生的整個學習過程成為“猜想”,繼而緊張地沉思,期待尋找理由和證明過程。 在實際情況下進行學習,可以使學生利用已有知識與經驗,同化和索引出當前學習的新知識,這樣獲取的知識,不但易于保持,而且易于遷移到陌生的問題情境中。
對于本題:……
2、由實例得出本課新的知識點是:……
3、講解例題。
我們在講解例題時,不僅在于怎樣解,更在于為什么這樣解,而及時對解題方法和規(guī)律進行概括,有利于發(fā)展學生的思維能力。在題中:
4、能力訓練。
課后練習……
使學生能鞏固羨慕自覺運用所學知識與解題思想方法。
5、總結結論,強化認識。
知識性內容的小結,可把課堂教學傳授的知識盡快化為學生的素質;數學思想方法的小結,可使學生更深刻地理解數學思想方法在解題中的地位和應用,并且逐漸培養(yǎng)學生的良好的個性品質目標。
6、變式延伸,進行重構。
重視課本例題,適當對題目進行引申,使例題的作用更加突出,有利于學生對知識的串聯、累積、加工,從而達到舉一反三的效果。
四、教學評價
學生學習的學習結果評價當然重要,但是更重要的是學生學習的過程評價,教師應當高度重視學生學習過程中的參與度、自信心、團隊精神合作意識數學能力的發(fā)現,以及學習的興趣和成就感。
高中數學說課稿 篇6
說教學目標
A、知識目標:
掌握等差數列前n項和公式的推導方法;掌握公式的運用。
B、能力目標:
。1)通過公式的探索、發(fā)現,在知識發(fā)生、發(fā)展以及形成過程中培養(yǎng)學生觀察、聯想、歸納、分析、綜合和邏輯推理的能力。
。2)利用以退求進的思維策略,遵循從特殊到一般的認知規(guī)律,讓學生在實踐中通過觀察、嘗試、分析、類比的方法導出等差數列的求和公式,培養(yǎng)學生類比思維能力。
。3)通過對公式從不同角度、不同側面的剖析,培養(yǎng)學生思維的靈活性,提高學生分析問題和解決問題的能力。
C、情感目標:(數學文化價值)
。1)公式的發(fā)現反映了普遍性寓于特殊性之中,從而使學生受到辯證唯物主義思想的熏陶。
。2)通過公式的運用,樹立學生"大眾教學"的`思想意識。
。3)通過生動具體的現實問題,令人著迷的數學史,激發(fā)學生探究的興趣和欲望,樹立學生求真的勇氣和自信心,增強學生學好數學的心理體驗,產生熱愛數學的情感。
說教學重點:
等差數列前n項和的公式。
說教學難點:
等差數列前n項和的公式的靈活運用。
說教學方法:
啟發(fā)、討論、引導式。
教具:
現代教育多媒體技術。
教學過程
一、創(chuàng)設情景,導入新課。
師:上幾節(jié),我們已經掌握了等差數列的概念、通項公式及其有關性質,今天要進一步研究等差數列的前n項和公式。提起數列求和,我們自然會想到德國偉大的數學家高斯"神速求和"的故事,小高斯上小學四年級時,一次教師布置了一道數學習題:"把從1到100的自然數加起來,和是多少?"年僅10歲的小高斯略一思索就得到答案5050,這使教師非常吃驚,那么高斯是采用了什么方法來巧妙地計算出來的呢?如果大家也懂得那樣巧妙計算,那你們就是二十世紀末的新高斯。(教師觀察學生的表情反映,然后將此問題縮小十倍)。我們來看這樣一道一例題。
例1,計算:1+2+3+4+5+6+7+8+9+10。
這道題除了累加計算以外,還有沒有其他有趣的解法呢?小組討論后,讓學生自行發(fā)言解答。
生1:因為1+10=2+9=3+8=4+7=5+6,所以可湊成5個11,得到55。
生2:可設S=1+2+3+4+5+6+7+8+9+10,根據加法交換律,又可寫成 S=10+9+8+7+6+5+4+3+2+1。
上面兩式相加得2S=11+10+。。。。。。+11=10×11=110
10個
所以我們得到S=55,
即1+2+3+4+5+6+7+8+9+10=55
師:高斯神速計算出1到100所有自然數的各的方法,和上述兩位同學的方法相類似。
理由是:1+100=2+99=3+98=。。。。。。=50+51=101,有50個101,所以1+2+3+。。。。。。+100=50×101=5050。請同學們想一下,上面的方法用到等差數列的哪一個性質呢?
生3:數列{an}是等差數列,若m+n=p+q,則am+an=ap+aq。
二、教授新課(嘗試推導)
師:如果已知等差數列的首項a1,項數為n,第n項an,根據等差數列的性質,如何來導出它的前n項和Sn計算公式呢?根據上面的例子同學們自己完成推導,并請一位學生板演。
生4:Sn=a1+a2+。。。。。。an—1+an也可寫成
Sn=an+an—1+。。。。。。a2+a1
兩式相加得2Sn=(a1+an)+(a2+an—1)+。。。。。。(an+a1)
n個
=n(a1+an)
所以Sn=(I)
師:好!如果已知等差數列的首項為a1,公差為d,項數為n,則an=a1+(n—1)d代入公式(1)得
Sn=na1+ d(II)
上面(I)、(II)兩個式子稱為等差數列的前n項和公式。公式(I)是基本的,我們可以發(fā)現,它可與梯形面積公式(上底+下底)×高÷2相類比,這里的上底是等差數列的首項a1,下底是第n項an,高是項數n。引導學生總結:這些公式中出現了幾個量?(a1,d,n,an,Sn),它們由哪幾個關系聯系?[an=a1+(n—1)d,Sn==na1+ d];這些量中有幾個可自由變化?(三個)從而了解到:只要知道其中任意三個就可以求另外兩個了。下面我們舉例說明公式(I)和(II)的一些應用。
三、公式的應用(通過實例演練,形成技能)。
1、直接代公式(讓學生迅速熟悉公式,即用基本量例2、計算:
。1)1+2+3+。。。。。。+n
。2)1+3+5+。。。。。。+(2n—1)
。3)2+4+6+。。。。。。+2n
。4)1—2+3—4+5—6+。。。。。。+(2n—1)—2n
請同學們先完成(1)—(3),并請一位同學回答。
生5:直接利用等差數列求和公式(I),得
。1)1+2+3+。。。。。。+n=
。2)1+3+5+。。。。。。+(2n—1)=
(3)2+4+6+。。。。。。+2n==n(n+1)
師:第(4)小題數列共有幾項?是否為等差數列?能否直接運用Sn公式求解?若不能,那應如何解答?小組討論后,讓學生發(fā)言解答。
生6:(4)中的數列共有2n項,不是等差數列,但把正項和負項分開,可看成兩個等差數列,所以
原式=[1+3+5+。。。。。。+(2n—1)]—(2+4+6+。。。。。。+2n)
=n2—n(n+1)=—n
生7:上題雖然不是等差數列,但有一個規(guī)律,兩項結合都為—1,故可得另一解法:
原式=—1—1—。。。。。!1=—n
n個
師:很好!在解題時我們應仔細觀察,尋找規(guī)律,往往會尋找到好的方法。注意在運用Sn公式時,要看清等差數列的項數,否則會引起錯解。
例3、(1)數列{an}是公差d=—2的等差數列,如果a1+a2+a3=12,a8+a9+a10=75,求a1,d,S10。
生8:(1)由a1+a2+a3=12得3a1+3d=12,即a1+d=4
又∵d=—2,∴a1=6
∴S12=12 a1+66×(—2)=—60
生9:(2)由a1+a2+a3=12,a1+d=4
a8+a9+a10=75,a1+8d=25
解得a1=1,d=3 ∴S10=10a1+=145
師:通過上面例題我們掌握了等差數列前n項和的公式。在Sn公式有5個變量。已知三個變量,可利用構造方程或方程組求另外兩個變量(知三求二),請同學們根據例3自己編題,作為本節(jié)的課外練習題,以便下節(jié)課交流。
師:(繼續(xù)引導學生,將第(2)小題改編)
①數列{an}等差數列,若a1+a2+a3=12,a8+a9+a10=75,且Sn=145,求a1,d,n
、谌舸祟}不求a1,d而只求S10時,是否一定非來求得a1,d不可呢?引導學生運用等差數列性質,用整體思想考慮求a1+a10的值。
2、用整體觀點認識Sn公式。
例4,在等差數列{an}, (1)已知a2+a5+a12+a15=36,求S16;(2)已知a6=20,求S11。(教師啟發(fā)學生解)
師:來看第(1)小題,寫出的計算公式S16==8(a1+a6)與已知相比較,你發(fā)現了什么?
生10:根據等差數列的性質,有a1+a16=a2+a15=a5+a12=18,所以S16=8×18=144。
師:對。ê唵涡〗Y)這個題目根據已知等式是不能直接求出a1,a16和d的,但由等差數列的性質可求a1與an的和,于是這個問題就得到解決。這是整體思想在解數學問題的體現。
師:由于時間關系,我們對等差數列前n項和公式Sn的運用一一剖析,引導學生觀察當d≠0時,Sn是n的二次函數,那么從二次(或一次)的函數的觀點如何來認識Sn公式后,這留給同學們課外繼續(xù)思考。
最后請大家課外思考Sn公式(1)的逆命題:
已知數列{an}的前n項和為Sn,若對于所有自然數n,都有Sn=。數列{an}是否為等差數列,并說明理由。
四、小結與作業(yè)。
師:接下來請同學們一起來小結本節(jié)課所講的內容。
生11:1、用倒序相加法推導等差數列前n項和公式。
2、用所推導的兩個公式解決有關例題,熟悉對Sn公式的運用。
生12:1、運用Sn公式要注意此等差數列的項數n的值。
2、具體用Sn公式時,要根據已知靈活選擇公式(I)或(II),掌握知三求二的解題通法。
3、當已知條件不足以求此項a1和公差d時,要認真觀察,靈活應用等差數列的有關性質,看能否用整體思想的方法求a1+an的值。
師:通過以上幾例,說明在解題中靈活應用所學性質,要糾正那種不明理由盲目套用公式的學習方法。同時希望大家在學習中做一個有心人,去發(fā)現更多的性質,主動積極地去學習。
本節(jié)所滲透的數學方法;觀察、嘗試、分析、歸納、類比、特定系數等。
數學思想:類比思想、整體思想、方程思想、函數思想等。
作業(yè):P49:13、14、15、17
高中數學說課稿 篇7
各位評委,老師們:大家好!
很高興參加這次說課活動。這對我來說也是一次難得的學習和鍛煉的機會,感謝各位老師在百忙之中來此予以指導。希望各位評委和老師們對我的說課內容提出寶貴意見。
我說課的內容是<平面向量>的教學,所用的教材是人民教育出版社出版的全日制普通高級中學教科書(試驗修訂本—必修)<數學>第一冊下,教學內容為第96頁至98頁第五章第一節(jié)。本校是浙江省一級重點中學,學生基礎相對較好。我在進行教學設計時,也充分考慮到了這一點。
下面我從教材分析,教學目標的確定,教學方法的選擇和教學過程的設計四個方面來匯報我對這節(jié)課的教學設想。
一說教材
。1)地位和作用
向量是近代數學中重要和基本的概念之一,有著深刻的幾何背景,是解決幾何問題的有力工具。向量概念引入后,全等和平行(平移),相似,垂直,勾股定理等就可以轉化為向量的加(減)法,數乘向量,數量積運算(運算率),從而把圖形的基本性質轉化為向量的運算體系。向量是溝通代數,幾何與三角函數的一種工具,有著極其豐富的實際背景,在數學和物理學科中具有廣泛的應用。
平面向量的基本概念是在學生了解了物理學中的有關力,位移等矢量的概念的基礎上進一步對向量的深入學習。為學習向量的知識體系奠定了知識和方法基礎。
。2)教學結構的調整
課本在這一部分內容的教學為一課時,首先從小船航行的距離和方向兩個要素出發(fā),抽象出向量的概念,并重點說明了向量與數量的區(qū)別。然后介紹了向量的幾何表示,向量的長度,零向量,單位向量,平行向量,共線向量,相等向量等基本概念。為使學生更好地掌握這些基本概念,同時深化其認知過程和探究過程。在教學中我將教學的順序做如下的調整:將本節(jié)教學中認知過程的教學內容適當集中,以突出這節(jié)課的主題;例題,習題部分主要由學生依照概念自行分析,獨立完成。
。3)重點,難點,關鍵
由于本節(jié)課是本章內容的第一節(jié)課,是學生學習本章的基礎。為了本章后面知識的學習,首先必須掌握向量的概念,要抓住向量的本質:大小與方向。所以向量,相等向量的概念,向量的幾何表示是這節(jié)課的重點。本節(jié)課是為高一后半學期學生設計的,盡管此時的學生已經有了一定的學習方法和習慣,但根據以往的教學經驗,多數學生對向量的認識還比較單一,僅僅考慮其大小,忽略其方向,這對學生的理解能力要求比較高,所以我認為向量概念也是這節(jié)課的難點。而解決這一難點的關鍵是多用復雜的幾何圖形中相等的有向線段讓學生進行辨認,加深對向量的理解。
二說教學目標的確定
根據本課教材的特點,新大綱對本節(jié)課的教學要求,學生身心發(fā)展的合理需要,我從三個方面確定了以下教學目標:
(1)基礎知識目標:理解向量,零向量,單位向量,共線向量,平行向量,相等向量的概念,會用字母表示向量,能讀寫已知圖中的向量。會根據圖形判定向量是否平行,共線,相等。
(2)能力訓練目標:培養(yǎng)學生觀察、歸納、類比、聯想等發(fā)現規(guī)律的一般方法,培養(yǎng)學生觀察問題,分析問題,解決問題的能力。
。3)情感目標:讓學生在民主、和諧的共同活動中感受學習的樂趣。
三說教學方法的選擇
、窠虒W方法
本節(jié)課我采用了”啟發(fā)探究式的教學方法,根據本課教材的特點和學生的實際情況在教學中突出以下兩點:
(1)由教材的特點確立類比思維為教學的主線。
從教材內容看平面向量無論從形式還是內容都與物理學中的有向線段,矢量的概念類似。因此在教學中運用類比作為思維的主線進行教學。讓學生充分體會數學知識與其他學科之間的聯系以及發(fā)生與發(fā)展的過程。
。2)由學生的特點確立自主探索式的學習方法
通常學生對于概念課學起來很枯燥,不感興趣,因此要考慮學生的情感需要,找一些學生感興趣的題材來激發(fā)學生的學習興趣,另外,學生都有表現自己的欲望,希望得到老師和其他同學的認可,要多表揚,多肯定來激勵他們的學習熱情?紤]到我校學生的基礎較好,思維較為活躍,對自主探索式的學習方法也有一定的認識,所以在教學中我通過創(chuàng)設問題情境,啟發(fā)引導學生運用科學的思維方法進行自主探究。將學生的獨立思考,自主探究,交流討論等探索活動貫穿于課堂教學的全過程,突出學生的主體作用。
、蚪虒W手段
本節(jié)課中,除使用常規(guī)的教學手段外,我還使用了多媒體投影儀和計算機來輔助教學。多媒體投影為師生的交流和討論提供了平臺;計算機演示的作圖過程則有助于滲透數形結合思想,更易于對概念的理解和難點的突破。
四教學過程的設計
Ⅰ知識引入階段———提出學習課題,明確學習目標
。1)創(chuàng)設情境——引入概念
數學學習應該與學生的生活融合起來,從學生的生活經驗和已有的知識背景出發(fā),讓他們在生活中去發(fā)現數學、探究數學、認識并掌握數學。
由生活中具體的向量的實例引入:大海中船只的航線,中國象棋中”馬”,”象”的走法等。這些符合高中學生思維活躍,想象力豐富的特點,有利于激發(fā)學生的學習興趣。
。2)觀察歸納——形成概念
由實例得出有向線段的概念,有向線段的三個要素:起點,方向,長度。明確知道了有向線段的起點,方向和長度,它的終點就唯一確定。再有目的的進行設計,引導學生概括總結出本課新的知識點:向量的概念及其幾何表示。
。3)討論研究——深化概念
在得到概念后進行歸納,深化,之后向學生提出以下三個問題:
、傧蛄康囊厥鞘裁?
、谙蛄恐g能否比較大?
、巯蛄颗c數量的區(qū)別是什么?
同時指出這就是本節(jié)課我們要研究和學習的主題。
、蛑R探索階段———探索平面向量的平行向量。相等向量等概念
。1)總結反思——提高認識
方向相同或相反的非零向量叫平行向量,也即共線向量,并且規(guī)定0與任一向量平行.長度相等且方向相同的向量叫相等向量,規(guī)定零向量與零向量相等.平行向量不一定相等,但相等向量一定是平行向量,即向量平行是向量相等的必要條件。
。2)即時訓練—鞏固新知
為了使學生達到對知識的深化理解,從而達到鞏固提高的效果,我特地設計了一組即時訓練題,通過學生的觀察嘗試,討論研究,教師引導來鞏固新知識。
[練習1]判斷下列命題是否正確,若不正確,請簡述理由.
、傧蛄颗c是共線向量,則A、B、C、D四點必在一直線上;
、趩挝幌蛄慷枷嗟龋
③任一向量與它的相反向量不相等;
、芩倪呅蜛BCD是平行四邊形的充要條件是=;
⑤模為0是一個向量方向不確定的充要條件;
⑥共線的向量,若起點不同,則終點一定不同.
。劬毩2]下列命題正確的是( )
A.a與b共線,b與c共線,則a與c也共線
B.任意兩個相等的非零向量的始點與終點是一平行四邊形的四頂點
C.向量a與b不共線,則a與b都是非零向量
D.有相同起點的兩個非零向量不平行
Ⅲ知識應用階段————共線向量,相等向量等概念的初步應用
在本階段的教學中,我采用的是課本上一道典型的例題:在一個復雜圖形中觀察,辨認平行,相等的有向線段。選用本題的目的是讓學生進行獨立思考,自主探究,交流討論等探索活動,加深對概念的理解和對難點的突破。
例如圖所示,設O是正六邊形ABCDEF的中心,分別寫出圖中與向量相等的向量。(同時思考:向量與相等么?向量與相等么?)
具體教學安排如下:
(1)分析解決問題
先引導學生分析解決問題。包括向量的概念,:向量相等的概念。抓住相等向量概念的實質:兩個向量只有當它們的模相等,同時方向又相同時,才能稱它們相等。進而進行正確的辨認,直至最終解決問題。
。2)歸納解題方法
主要引導學生歸納以下兩個問題:①零向量的方向是任意的,它只與零向量相
等;②兩個向量只要它們的模相等,方向相同就是相等向量。一個向量只要不改變它的大小和方向,是可以任意平行移動的,既向量是自由的。
、魧W習,小結階段———歸納知識方法,布置課后作業(yè)
本階段通過學習小結進行課堂教學的反饋,組織和指導學生歸納知識,技能,方法的一般規(guī)律,為后續(xù)學習打好基礎。
具體的教學安排如下:
。1)知識,方法小結在知識層面上我首先引導學生回顧本節(jié)課的主要內容,提醒學生要抓住向量的本質:大小與方向,對它們進行類比,加深對每個概念的理解。
在方法層面上我將帶領學生回顧探索過程中用到的思維方法和數學方法如:
類比,數形結合,等價轉化等進行強調。
(2)布置課后作業(yè)
閱讀教材96至97頁內容,整理課堂筆記,習題5。1第1,2,3題。
【實用的高中數學說課稿范文錦集7篇】相關文章:
實用的高中數學說課稿范文錦集10篇08-18
實用的高中數學說課稿范文錦集9篇08-18
實用的高中數學說課稿范文錦集八篇08-17
實用的高中數學說課稿范文錦集九篇08-16
實用的高中數學說課稿范文錦集6篇08-15
實用的高中數學說課稿范文錦集8篇08-15
實用的高中數學說課稿范文錦集六篇08-13
實用的高中數學說課稿范文錦集七篇08-20
實用的高中數學說課稿范文錦集十篇08-20