精選高中數(shù)學(xué)說課稿范文集合8篇
作為一位優(yōu)秀的人民教師,時常需要用到說課稿,借助說課稿可以提高教學(xué)質(zhì)量,取得良好的教學(xué)效果。那么什么樣的說課稿才是好的呢?下面是小編精心整理的高中數(shù)學(xué)說課稿8篇,歡迎閱讀與收藏。
高中數(shù)學(xué)說課稿 篇1
一、教材分析
1、教材內(nèi)容
本節(jié)課是蘇教版第二章《函數(shù)概念和基本初等函數(shù)Ⅰ》2.1.3函數(shù)簡單性質(zhì)的第一課時,該課時主要學(xué)習(xí)增函數(shù)、減函數(shù)的定義,以及應(yīng)用定義解決一些簡單問題.
2、教材所處地位、作用
函數(shù)的性質(zhì)是研究函數(shù)的基石,函數(shù)的單調(diào)性是首先研究的一個性質(zhì).通過對本節(jié)課的學(xué)習(xí),讓學(xué)生領(lǐng)會函數(shù)單調(diào)性的概念、掌握證明函數(shù)單調(diào)性的步驟,并能運用單調(diào)性知識解決一些簡單的實際問題.通過上述活動,加深對函數(shù)本質(zhì)的認(rèn)識.函數(shù)的單調(diào)性既是學(xué)生學(xué)過的函數(shù)概念的延續(xù)和拓展,又是后續(xù)研究指數(shù)函數(shù)、對數(shù)函數(shù)、三角函數(shù)的單調(diào)性的基礎(chǔ).此外在比較數(shù)的大小、函數(shù)的定性分析以及相關(guān)的數(shù)學(xué)綜合問題中也有廣泛的應(yīng)用,它是整個高中數(shù)學(xué)中起著承上啟下作用的核心知識之一.從方法論的角度分析,本節(jié)教學(xué)過程中還滲透了探索發(fā)現(xiàn)、數(shù)形結(jié)合、歸納轉(zhuǎn)化等數(shù)學(xué)思想方法.
3、教學(xué)目標(biāo)
。1)知識與技能:使學(xué)生理解函數(shù)單調(diào)性的概念,掌握判別函數(shù)單調(diào)性
的方法;
(2)過程與方法:從實際生活問題出發(fā),引導(dǎo)學(xué)生自主探索函數(shù)單調(diào)性的概念,應(yīng)用圖象和單調(diào)性的定義解決函數(shù)單調(diào)性問題,讓學(xué)生領(lǐng)會數(shù)形結(jié)合的數(shù)學(xué)思想方法,培養(yǎng)學(xué)生發(fā)現(xiàn)問題、分析問題、解決問題的能力.
。3)情感態(tài)度價值觀:讓學(xué)生體驗數(shù)學(xué)的科學(xué)功能、符號功能和工具功能,培養(yǎng)學(xué)生直覺觀察、探索發(fā)現(xiàn)、科學(xué)論證的良好的數(shù)學(xué)思維品質(zhì).
4、重點與難點
教學(xué)重點(1)函數(shù)單調(diào)性的概念;
。2)運用函數(shù)單調(diào)性的定義判斷一些函數(shù)的單調(diào)性.
教學(xué)難點(1)函數(shù)單調(diào)性的知識形成;
。2)利用函數(shù)圖象、單調(diào)性的定義判斷和證明函數(shù)的單調(diào)性.
二、教法分析與學(xué)法指導(dǎo)
本節(jié)課是一節(jié)較為抽象的數(shù)學(xué)概念課,因此,教法上要注意:
1、通過學(xué)生熟悉的實際生活問題引入課題,為概念學(xué)習(xí)創(chuàng)設(shè)情境,拉近數(shù)學(xué)與現(xiàn)實的距離,激發(fā)了學(xué)生求知欲,調(diào)動了學(xué)生主體參與的積極性.
2、在運用定義解題的過程中,緊扣定義中的關(guān)鍵語句,通過學(xué)生的主體參與,逐個完成對各個難點的突破,以獲得各類問題的解決.
3、在鼓勵學(xué)生主體參與的同時,不可忽視教師的主導(dǎo)作用.具體體現(xiàn)在設(shè)問、講評和規(guī)范書寫等方面,要教會學(xué)生清晰的思維、嚴(yán)謹(jǐn)?shù)耐评,并成功地完成書面表達(dá).
4、采用投影儀、多媒體等現(xiàn)代教學(xué)手段,增大教學(xué)容量和直觀性.
在學(xué)法上:
1、讓學(xué)生從問題中質(zhì)疑、嘗試、歸納、總結(jié)、運用,培養(yǎng)學(xué)生發(fā)現(xiàn)問題、研究問題和解決問題的能力.
2、讓學(xué)生利用圖形直觀啟迪思維,并通過正、反例的構(gòu)造,來完成從感性認(rèn)識到理性思維的一個飛躍.
高中數(shù)學(xué)說課稿 篇2
各位老師你們好!今天我要為大家講的課題是
首先,我對本節(jié)教材進(jìn)行一些分析:
一、教材分析(說教材):
1. 教材所處的地位和作用:
本節(jié)內(nèi)容在全書和章節(jié)中的作用是:《 》是 中數(shù)學(xué)教材第 冊第 章第 節(jié)內(nèi)容。在此之前學(xué)生已學(xué)習(xí)了 基礎(chǔ),這為過渡到本節(jié)的學(xué)習(xí)起著鋪墊作用。本節(jié)內(nèi)容是在 中,占據(jù) 的地位。以及為其他學(xué)科和今后的學(xué)習(xí)打下基礎(chǔ)。
2. 教育教學(xué)目標(biāo):
根據(jù)上述教材分析,考慮到學(xué)生已有的認(rèn)知結(jié)構(gòu)心理特征,制定如下教學(xué)目標(biāo):
。1)知識目標(biāo): (2)能力目標(biāo):通過教學(xué)初步培養(yǎng)學(xué)生分析問題,解決實際問題,讀圖分析,收集處理信息,團(tuán)結(jié)協(xié)作,語言表達(dá)能力以及通過師生雙邊活動,初步培養(yǎng)學(xué)生運用知識的能力,培養(yǎng)學(xué)生加強理論聯(lián)系實際的能力,(3)情感目標(biāo):通過 的教學(xué)引導(dǎo)學(xué)生從現(xiàn)實的生活經(jīng)歷與體驗出發(fā),激發(fā)學(xué)生學(xué)習(xí)興趣。
3. 重點,難點以及確定依據(jù):
本著課程標(biāo)準(zhǔn),在吃透教材基礎(chǔ)上,我確立了如下的教學(xué)重點、難點
重點: 通過 突出重點
難點: 通過 突破難點
關(guān)鍵:
下面,為了講清重難上點,使學(xué)生能達(dá)到本節(jié)課設(shè)定的目標(biāo),再從教法和學(xué)法上談?wù)劊?/p>
二、教學(xué)策略(說教法)
1. 教學(xué)手段:
如何突出重點,突破難點,從而實現(xiàn)教學(xué)目標(biāo)。在教學(xué)過程中擬計劃進(jìn)行如下操作:教學(xué)方法。基于本節(jié)課的特點: 應(yīng)著重采用 的教學(xué)方法。
2. 教學(xué)方法及其理論依據(jù):堅持“以學(xué)生為主體,以教師為主導(dǎo)”的原則,根據(jù)學(xué)生的心理發(fā)展規(guī)律,采用學(xué)生參與程度高的學(xué)導(dǎo)式討論教學(xué)法。在學(xué)生看書,討論的基礎(chǔ)上,在老師啟發(fā)引導(dǎo)下,運用問題解決式教法,師生交談法,圖像信號法,問答式,課堂討論法。在采用問答法時,特別注重不同難度的問題,提問不同層次的學(xué)生,面向全體,使基礎(chǔ)差的學(xué)生也能有表現(xiàn)機會,培養(yǎng)其自信心,激發(fā)其學(xué)習(xí)熱情。有效的開發(fā)各層次學(xué)生的潛在智能,力求使學(xué)生能在原有的基礎(chǔ)上得到發(fā)展。同時通過課堂練習(xí)和課后作業(yè),啟發(fā)學(xué)生從書本知識回到社會實踐。提供給學(xué)生與其生活和周圍世界密切相關(guān)的數(shù)學(xué)知識,學(xué)習(xí)基礎(chǔ)性的知識和技能,在教學(xué)中積極培養(yǎng)學(xué)生學(xué)習(xí)興趣和動機,明確的學(xué)習(xí)目的,老師應(yīng)在課堂上充分調(diào)動學(xué)生的學(xué)習(xí)積極性,激發(fā)來自學(xué)生主體的最有力的動力。
3. 學(xué)情分析:(說學(xué)法)
我們常說:“現(xiàn)代的文盲不是不識字的人,而是沒有掌握學(xué)習(xí)方法的人”,因而在教學(xué)中要特別重視學(xué)法的指導(dǎo)。
。1) 學(xué)生特點分析:中學(xué)生心理學(xué)研究指出,高中階段是(查同中學(xué)生心發(fā)展情況)抓住學(xué)
生特點,積極采用形象生動,形式多樣的教學(xué)方法和學(xué)生廣泛的積極主動參與的學(xué)習(xí)方式,定能激發(fā)學(xué)生興趣,有效地培養(yǎng)學(xué)生能力,促進(jìn)學(xué)生個性發(fā)展。生理上表少年好動,注意力易分散
。2) 知識障礙上:知識掌握上,學(xué)生原有的知識 ,許多學(xué)生出現(xiàn)知識遺忘,所以應(yīng)全面系統(tǒng)的去講述;學(xué)生學(xué)習(xí)本節(jié)課的知識障礙, 知識 學(xué)生不易理解,所以教學(xué)中老師應(yīng)予以簡單明白,深入淺出的分析。
(3) 動機和興趣上:明確的學(xué)習(xí)目的,老師應(yīng)在課堂上充分調(diào)動學(xué)生的學(xué)習(xí)積極性,激發(fā)來自學(xué)生主體的最有力的動力
最后我來具體談?wù)勥@一堂課的教學(xué)過程:
4. 教學(xué)程序及設(shè)想:
。1)由 引入:把教學(xué)內(nèi)容轉(zhuǎn)化為具有潛在意義的問題,讓學(xué)生產(chǎn)生強烈的問題意識,使學(xué)生的整個學(xué)習(xí)過程成為“猜想”繼而緊張的沉思,期待錄找理由和證明過程。在實際情況下學(xué)習(xí)可以使學(xué)生利用已有的知識與經(jīng)驗,同化和索引出當(dāng)肖學(xué)習(xí)的新知識,這樣獲取知識,不但易于保持,而且易于遷移到陌生的問題情境中。
。2)由實例得出本課新的知識點
。3)講解例題。在講例題時,不僅在于怎樣解,更在于為什么這樣解,而及時對解題方法和規(guī)律進(jìn)行概括,有利于學(xué)生的思維能力。
。4)能力訓(xùn)練。課后練習(xí)使學(xué)生能鞏固羨慕自覺運用所學(xué)知識與解題思想方法。
。5)總結(jié)結(jié)論,強化認(rèn)識。知識性的內(nèi)容小結(jié),可把課堂教學(xué)傳授的知識盡快化為學(xué)生的素質(zhì),數(shù)學(xué)思想方法的小結(jié),可使學(xué)生更深刻地理解數(shù)學(xué)思想方法在解題中的地位和應(yīng)用,并且逐步培養(yǎng)學(xué)生良好的個性品質(zhì)目標(biāo)。
(6)變式延伸,進(jìn)行重構(gòu),重視課本例題,適當(dāng)對題目進(jìn)行引申,使例題的作用更加突出,有利于學(xué)生對知識的串聯(lián),累積,加工,從而達(dá)到舉一反三的效果。
。7)板書
。8)布置作業(yè)。 針對學(xué)生素質(zhì)的差異進(jìn)行分層訓(xùn)練,既使學(xué)生掌握基礎(chǔ)知識,又使學(xué)有余力的學(xué)生有所提高,
教學(xué)程序:
課堂結(jié)構(gòu):復(fù)習(xí)提問,導(dǎo)入講授課,課堂練習(xí),鞏固新課,布置作業(yè)等五部分
高中數(shù)學(xué)說課稿 篇3
各位評委:下午好!
我叫 ,來自 。今天我說課的課題《 》(第 課時)。下面我將圍繞本節(jié)課“教什么?”、“怎樣教?”以及“為什么這樣教?”三個問題,從教材分析、教學(xué)目標(biāo)分析、教學(xué)重難點分析、教法與學(xué)法、課堂設(shè)計五方面逐一加以分析和說明。
一、教材分析
。ㄒ唬┙滩牡牡匚缓妥饔
《 》是人教版出版社 第 冊、第 單元的內(nèi)容!丁芳仁 在知識上的延伸和發(fā)展,又是本章 的運用與鞏固,也為下一章 教學(xué)作鋪墊,起著鏈條的作用。同時,這部分內(nèi)容較好地反映了 的內(nèi)在聯(lián)系和相互轉(zhuǎn)化,蘊含著歸納、轉(zhuǎn)化、數(shù)形結(jié)合等豐富的數(shù)學(xué)思想方法,能較好地培養(yǎng)學(xué)生的觀察能力、概括能力、探究能力及創(chuàng)新意識。
概括地講,本節(jié)課內(nèi)容的地位體現(xiàn)在它的基礎(chǔ)性,作用體現(xiàn)在它的工具性。
。ǘ、學(xué)情分析
通過前一階段的教學(xué),學(xué)生對 的認(rèn)識已有了一定的認(rèn)知結(jié)構(gòu),主要體現(xiàn)在三個層面:
知識層面:學(xué)生在已初步掌握了 。
能力層面:學(xué)生在初步已經(jīng)掌握了用
初步具備了 思想。 情感層面:學(xué)生對數(shù)學(xué)新內(nèi)容的學(xué)習(xí)有相當(dāng)?shù)呐d趣和積極性。但探究問題的能力以及合作交流等方面發(fā)展不夠均衡.
。ㄈ┙虒W(xué)課時
本節(jié)內(nèi)容分 課時學(xué)習(xí)。(本課時,品味數(shù)學(xué)中的和諧美,體驗成功的樂趣。)
二、教學(xué)目標(biāo)分析
根據(jù)教學(xué)大綱的要求、本節(jié)教材的特點和高中生的認(rèn)知規(guī)律,本節(jié)課的教學(xué)目標(biāo)確定為:
知識與技能:
過程與方法:
情感態(tài)度:
(例如:創(chuàng)設(shè)問題情景,激發(fā)學(xué)生觀察、分析、探求的學(xué)習(xí)激情、強化學(xué)生參與意識及主體作用。在自主探究與討論交流過程中,培養(yǎng)學(xué)生的合作意識和創(chuàng)新精神. 通過 對立統(tǒng)一關(guān)系的認(rèn)識,對學(xué)生進(jìn)行辨證唯物主義教育)
在探索過程中,培養(yǎng)獨立獲取數(shù)學(xué)知識的能力。在解決問題的過程中,讓學(xué)生感受到成功的喜悅,樹立學(xué)好數(shù)學(xué)的信心。在解答數(shù)學(xué)問題時,讓學(xué)生養(yǎng)成理性思維的品質(zhì)。
三、重難點分析
重點確定為:
要把握這個重點。關(guān)鍵在于理解
其本質(zhì)就是
本節(jié)課的難點確定為:
要突破這個難點,讓學(xué)生歸納
作鋪墊。
四、教法與學(xué)法分析
(一)學(xué)法指導(dǎo)
教學(xué)矛盾的主要方面是學(xué)生的學(xué)。學(xué)是中心,會學(xué)是目的。因此在教學(xué)中要不斷指導(dǎo)學(xué)生學(xué)會學(xué)習(xí)。本節(jié)課主要是教給學(xué)生“動手畫、動眼看、動腦想、動口說、善提煉、勤鉆研”的研討式學(xué)習(xí)方法,這樣做增加了學(xué)生自主參與,合作交流的機會,教給了學(xué)生獲取知識的途徑、思考問題的方法,使學(xué)生真正成了教學(xué)的主體;只有這樣做,才能使學(xué)生“學(xué)”有新“思”,“思”有新“得”,“練”有新“獲”,學(xué)生也才會逐步感受到數(shù)學(xué)的美,會產(chǎn)生一種成功感,從而提高學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣;也只有這樣做,課堂教學(xué)才富有時代特色,才能適應(yīng)素質(zhì)教育下培養(yǎng)“創(chuàng)新型”人才的需要。
。ǘ┙谭ǚ治
本節(jié)課設(shè)計的指導(dǎo)思想是:現(xiàn)代認(rèn)知心理學(xué)--建構(gòu)主義學(xué)習(xí)理論。
建構(gòu)主義學(xué)習(xí)理論認(rèn)為:應(yīng)把學(xué)習(xí)看成是學(xué)生主動的建構(gòu)活動,學(xué)生應(yīng)與一定的知識背景即情景相聯(lián)系,在實際情景下進(jìn)行學(xué)習(xí),可以使學(xué)生利用已有知識與經(jīng)驗同化和索引出當(dāng)前要學(xué)習(xí)的新知識,這樣獲取的知識,不但便于保持,而且易于遷移到陌生的問題情景中。
本節(jié)課采用“誘思探究教學(xué)法”( 陜西師范大學(xué)教育研究所張熊飛教授)。在課堂教學(xué)中凸顯學(xué)生主體地位的重要性,不再是以教師為中心去設(shè)計教學(xué)過程,而是以學(xué)生為主體去組織教學(xué)進(jìn)程。把課堂真正地交給了學(xué)生,學(xué)生主體地位得以實現(xiàn)。
五、說教學(xué)過程
本節(jié)課的教學(xué)設(shè)計充分體現(xiàn)以學(xué)生發(fā)展為本,培養(yǎng)學(xué)生的觀察、概括和探究能力,遵循學(xué)生的認(rèn)知規(guī)律,體現(xiàn)理論聯(lián)系實際、循序漸進(jìn)和因材施教的教學(xué)原則,通過問題情境的創(chuàng)設(shè),激發(fā)興趣,使學(xué)生在問題解決的探索過程中,由學(xué)會走向會學(xué),由被動答題走向主動探究。
。ㄒ唬﹦(chuàng)設(shè)情景………………….
。ǘ┍扰f悟新………………….
。ㄈw納提煉…………………
(四)應(yīng)用新知,熟練掌握 …………………
。ㄎ澹┛偨Y(jié)…………………
。┳鳂I(yè)布置…………………
。ㄆ撸┌鍟O(shè)計…………………
以上是我對本節(jié)課的一些粗淺的認(rèn)識和構(gòu)想,如有不妥之處,懇請各位專家批評指正。謝謝
著名美國數(shù)學(xué)家和數(shù)學(xué)教育家波利亞 包括“弄清問題”、“擬定計劃”、“實現(xiàn)計劃”和“回顧反思”四大步驟的解題全過程,它們就好比是尋找和發(fā)現(xiàn)解法的思維過程進(jìn)行分解,使我們對解題的思維過程看得見,摸得著,易于操作。精髓是啟發(fā)你去聯(lián)想。聯(lián)想什么?怎樣聯(lián)想?
高中數(shù)學(xué)說課稿 篇4
一、教材分析
1、教材地位和作用
二面角及其平面角的概念是立體幾何最重要的概念之一。二面角的概念發(fā)展、完善了空間角的概念;而二面角的平面角不但定量描述了兩相交平面的相對位置,同時它也是空間中線線、線面、面面垂直關(guān)系的一個匯集點。搞好本節(jié)課的學(xué)習(xí),對學(xué)生系統(tǒng)地掌握直線和平面的知識乃至于創(chuàng)新能力的培養(yǎng)都具有十分重要的意義。教學(xué)大綱明確要求要讓學(xué)生掌握二面角及其平面角的概念和運用。
2、教學(xué)目標(biāo)
根據(jù)上面對教材的分析,并結(jié)合學(xué)生的認(rèn)知水平和思維特點,確定本節(jié)課的教學(xué)目標(biāo):
認(rèn)知目標(biāo):
(1)使學(xué)生正確理解二面角及其平面角的概念,并能初步運用它們解決實際問題。
。2)進(jìn)一步培養(yǎng)學(xué)生把空間問題轉(zhuǎn)化為平面問題的化歸思想。
能力目標(biāo):以培養(yǎng)學(xué)生的創(chuàng)新能力和動手能力為重點。
(1)突出對類比、直覺、發(fā)散等探索性思維的培養(yǎng),從而提高學(xué)生的創(chuàng)新能力。
。2)通過對圖形的觀察、分析、比較和操作來強化學(xué)生的動手操作能力。
教育目標(biāo):
(1)使學(xué)生認(rèn)識到數(shù)學(xué)知識來自實踐,并服務(wù)于實踐,從而增強學(xué)生應(yīng)用數(shù)學(xué)的意識。
(2)通過揭示線線、線面、面面之間的內(nèi)在聯(lián)系,進(jìn)一步培養(yǎng)學(xué)生聯(lián)系的辯證唯物主義觀點。
3、本節(jié)課教學(xué)的重、難點是兩個過程的教學(xué):
。1)二面角的平面角概念的形成過程。
。2)尋找二面角的平面角的方法的發(fā)現(xiàn)過程。
其理由如下:
。1)現(xiàn)行教材省略了概念的形成過程和方法的發(fā)現(xiàn)過程,沒有反映出科學(xué)認(rèn)識產(chǎn)生的辯證過程,與學(xué)生的認(rèn)知規(guī)律相悖,給學(xué)生的學(xué)習(xí)造成了很大的困難,非常不利于學(xué)生創(chuàng)新能力、獨立思考能力以及動手能力的培養(yǎng)。
。2)現(xiàn)代認(rèn)知學(xué)認(rèn)為,揭示知識的形成過程,對學(xué)生學(xué)習(xí)新知識是十分必要的。同時通過展現(xiàn)知識的發(fā)生、發(fā)展過程,給學(xué)生思考、探索、發(fā)現(xiàn)和創(chuàng)新提供了最大的空間,可以使學(xué)生在整個教學(xué)過程中始終處于積極的思維狀態(tài),進(jìn)而培養(yǎng)他們獨立思考和大膽求索的精神,這樣才能全面落實本節(jié)課的教學(xué)目標(biāo)。
二、指導(dǎo)思想和教學(xué)方法
在設(shè)計本教學(xué)時,主要貫徹了以下兩個思想:
1、樹立以學(xué)生發(fā)展為本的思想。通過構(gòu)建以學(xué)習(xí)者為中心、有利于學(xué)生主體精神、創(chuàng)新能力健康發(fā)展的寬松的`教學(xué)環(huán)境,提供學(xué)生自主探索和動手操作的機會,鼓勵他們創(chuàng)新思考,親身參與概念和方法的形成過程。2、堅持協(xié)同創(chuàng)新原則。把教材創(chuàng)新、教法創(chuàng)新以及學(xué)法創(chuàng)新有機地統(tǒng)一起來,因為只有教師創(chuàng)新地教,學(xué)生創(chuàng)新地學(xué),才能營建一個有利于創(chuàng)新能力培養(yǎng)的良好環(huán)境。
首先是教材創(chuàng)新。
。1)在二面角的平面角概念引入上,我變課本上的“直接給出定義”為“類比——猜想——操作——定義”,也就是變封閉的、邏輯演繹體系為開放的、探索性的發(fā)現(xiàn)過程。
。2)在引入定義之后,例題講解之前,引導(dǎo)學(xué)生發(fā)現(xiàn)尋找二面角的平面角的方法,為例題做好鋪墊。
。3)重新編排例題。
其次是教法創(chuàng)新。采用多種創(chuàng)新的教學(xué)方法,包括問題解決法、類比發(fā)現(xiàn)法、研究發(fā)現(xiàn)法等教學(xué)方法。
這組教學(xué)方法的特點是教師通過創(chuàng)設(shè)問題情境,引導(dǎo)學(xué)生逐步發(fā)現(xiàn)知識的形成過程,使教學(xué)活動真正建立在學(xué)生自主活動和探索的基礎(chǔ)上,著力培養(yǎng)學(xué)生的創(chuàng)新能力。
這組教學(xué)方法使得學(xué)生在解決問題的過程中學(xué)數(shù)學(xué),用數(shù)學(xué),不僅強調(diào)動腦思考,而且強調(diào)動手操作,親身體驗,注重多感官參與、多種心理能力的投入,通過學(xué)生全面、多樣的主體實踐活動,促進(jìn)他們獨立思考能力、動手能力等多方面素質(zhì)的整體發(fā)展。
教學(xué)手段的現(xiàn)代化有利于提高課堂效益,有利于創(chuàng)新人才的培養(yǎng),根據(jù)本節(jié)課的教學(xué)需要,確定利用《幾何畫板》制作課件來輔助教學(xué);此外,為加強直觀教學(xué),教師可預(yù)先做好一些模型。
最后是學(xué)法創(chuàng)新。意在指導(dǎo)學(xué)生會創(chuàng)新地學(xué)。
1、樂學(xué):在整個學(xué)習(xí)過程中學(xué)生要保持強烈的好奇心和求知欲,不斷強化自己的創(chuàng)新意識,全身心地投入到學(xué)習(xí)中去,成為學(xué)習(xí)的主人。
2、學(xué)會:在掌握基礎(chǔ)知識的同時,學(xué)生要注意領(lǐng)會化歸、類比聯(lián)想等數(shù)學(xué)思想方法的運用,學(xué)會建立完善的認(rèn)知結(jié)構(gòu)。
3、會學(xué):通過自已親身參與,學(xué)生要領(lǐng)會復(fù)習(xí)類比和深入研究這兩種知識創(chuàng)新的方法,從而既學(xué)到知識,又學(xué)會創(chuàng)新。
三、程序安排
(一)、二面角
1、揭示概念產(chǎn)生背景。
心理學(xué)研究表明,當(dāng)學(xué)生明確數(shù)學(xué)概念的學(xué)習(xí)目的和意義時,就會對概念的學(xué)習(xí)產(chǎn)生濃厚的興趣。創(chuàng)設(shè)問題情境,激發(fā)了學(xué)生的創(chuàng)新意識,營造了創(chuàng)新思維的氛圍。
問題情境1、我們是如何定量研究兩平行平面的相對位置的?
問題情境2、立幾中常用距離和角來定量描述兩個元素之間的相對位置,為什么不引入兩平行平面所成的角?
問題情境3、我們應(yīng)如何定量研究兩個相交平面之間的相對位置呢?
通過這三個問題,打開了學(xué)生的原有認(rèn)知結(jié)構(gòu),為知識的創(chuàng)新做好了準(zhǔn)備;同時也讓學(xué)生領(lǐng)會到,二面角這一概念的產(chǎn)生是因為研究兩相交平面的相對位置的需要,從而明確新課題研究的必要性,觸發(fā)學(xué)生積極思維活動的展開。
2、展現(xiàn)概念形成過程。
高中數(shù)學(xué)說課稿 篇5
一、教材分析
1、教材所處的地位和作用
奇偶性是人教A版第一章集合與函數(shù)概念的第3節(jié)函數(shù)的基本性質(zhì)的第2小節(jié)。
奇偶性是函數(shù)的一條重要性質(zhì),教材從學(xué)生熟悉的 及入手,從特殊到一般,從具體到抽象,注重信息技術(shù)的應(yīng)用,比較系統(tǒng)地介紹了函數(shù)的奇偶性。從知識結(jié)構(gòu)看,它既是函數(shù)概念的拓展和深化,又是后續(xù)研究指數(shù)函數(shù)、對數(shù)函數(shù)、冪函數(shù)、三角函數(shù)的基礎(chǔ)。因此,本節(jié)課起著承上啟下的重要作用。
2、學(xué)情分析
從學(xué)生的認(rèn)知基礎(chǔ)看,學(xué)生在初中已經(jīng)學(xué)習(xí)了軸對稱圖形和中心對稱圖形,并且有了一定數(shù)量的簡單函數(shù)的儲備。同時,剛剛學(xué)習(xí)了函數(shù)單調(diào)性,已經(jīng)積累了研究函數(shù)的基本方法與初步經(jīng)驗。
從學(xué)生的思維發(fā)展看,高一學(xué)生思維能力正在由形象經(jīng)驗型向抽象理論型轉(zhuǎn)變,能夠用假設(shè)、推理來思考和解決問題、
3、教學(xué)目標(biāo)
基于以上對教材和學(xué)生的分析,以及新課標(biāo)理念,我設(shè)計了這樣的教學(xué)目標(biāo):
【知識與技能】
1、能判斷一些簡單函數(shù)的奇偶性。
2、能運用函數(shù)奇偶性的代數(shù)特征和幾何意義解決一些簡單的問題。
【過程與方法】
經(jīng)歷奇偶性概念的形成過程,提高觀察抽象能力以及從特殊到一般的歸納概括能力。
【情感、態(tài)度與價值觀】
通過自主探索,體會數(shù)形結(jié)合的思想,感受數(shù)學(xué)的對稱美。
從課堂反應(yīng)看,基本上達(dá)到了預(yù)期效果。
4、教學(xué)重點和難點
重點:函數(shù)奇偶性的概念和幾何意義。
幾年的教學(xué)實踐證明,雖然函數(shù)奇偶性這一節(jié)知識點并不是很難理解,但知識點掌握不全面的學(xué)生容易出現(xiàn)下面的錯誤。他們往往流于表面形式,只根據(jù)奇偶性的定義檢驗成立即可,而忽視了考慮函數(shù)定義域的問題。因此,在介紹奇、偶函數(shù)的定義時,一定要揭示定義的隱含條件,從正反兩方面講清定義的內(nèi)涵和外延。因此,我把函數(shù)的奇偶性概念設(shè)計為本節(jié)課的重點。在這個問題上我除了注意概念的講解,還特意安排了一道例題,來加強本節(jié)課重點問題的講解。
難點:奇偶性概念的數(shù)學(xué)化提煉過程。
由于,學(xué)生看待問題還是靜止的、片面的,抽象概括能力比較薄弱,這對建構(gòu)奇偶性的概念造成了一定的困難。因此我把奇偶性概念的數(shù)學(xué)化提煉過程設(shè)計為本節(jié)課的難點。
二、教法與學(xué)法分析
1、教法
根據(jù)本節(jié)教材內(nèi)容和編排特點,為了更有效地突出重點,突破難點,按照學(xué)生的認(rèn)知規(guī)律,遵循教師為主導(dǎo),學(xué)生為主體,訓(xùn)練為主線的指導(dǎo)思想,采用以引導(dǎo)發(fā)現(xiàn)法為主,直觀演示法、類比法為輔。教學(xué)中,精心設(shè)計一個又一個帶有啟發(fā)性和思考性的問題,創(chuàng)設(shè)問題情景,誘導(dǎo)學(xué)生思考,使學(xué)生始終處于主動探索問題的積極狀態(tài),從而培養(yǎng)思維能力。從課堂反應(yīng)看,基本上達(dá)到了預(yù)期效果。
2、學(xué)法
讓學(xué)生在觀察一歸納一檢驗一應(yīng)用的學(xué)習(xí)過程中,自主參與知識的發(fā)生、發(fā)展、形成的過程,從而使學(xué)生掌握知識。
三、教學(xué)過程
具體的教學(xué)過程是師生互動交流的過程,共分六個環(huán)節(jié):設(shè)疑導(dǎo)入、觀圖激趣;指導(dǎo)觀察、形成概念;學(xué)生探索、領(lǐng)會定義;知識應(yīng)用,鞏固提高;總結(jié)反饋;分層作業(yè),學(xué)以致用。下面我對這六個環(huán)節(jié)進(jìn)行說明。
。ㄒ唬┰O(shè)疑導(dǎo)入、觀圖激趣
由于本節(jié)內(nèi)容相對獨立,專題性較強,所以我采用了開門見山導(dǎo)入方式,直接點明要學(xué)的內(nèi)容,使學(xué)生的思維迅速定向,達(dá)到開始就明確目標(biāo)突出重點的效果。
用多媒體展示一組圖片,使學(xué)生感受到生活中的對稱美。再讓學(xué)生觀察幾個特殊函數(shù)圖象。通過讓學(xué)生觀察圖片導(dǎo)入新課,既激發(fā)了學(xué)生濃厚的學(xué)習(xí)興趣,又為學(xué)習(xí)新知識作好鋪墊。
(二)指導(dǎo)觀察、形成概念
在這一環(huán)節(jié)中共設(shè)計了2個探究活動。
探究1 、2 數(shù)學(xué)中對稱的形式也很多,這節(jié)課我們就以函數(shù)和=︱x︱以及和為例展開探究。這個探究主要是通過學(xué)生的自主探究來實現(xiàn)的,由于有圖片的鋪墊,絕大多數(shù)學(xué)生很快就說出函數(shù)圖象關(guān)于Y軸(原點)對稱。接著學(xué)生填表,從數(shù)值角度研究圖象的這種特征,體現(xiàn)在自變量與函數(shù)值之間有何規(guī)律? 引導(dǎo)學(xué)生先把它們具體化,再用數(shù)學(xué)符號表示。借助課件演示(令 比較 得出等式 , 再令 ,得到 ) 讓學(xué)生發(fā)現(xiàn)兩個函數(shù)的對稱性反應(yīng)到函數(shù)值上具有的特性, ()然后通過解析式給出嚴(yán)格證明,進(jìn)一步說明這個特性對定義域內(nèi)任意一個 都成立。 最后給出偶函數(shù)(奇函數(shù))定義(板書)。
在這個過程中,學(xué)生把對圖形規(guī)律的感性認(rèn)識,轉(zhuǎn)化成數(shù)量的規(guī)律性,從而上升到了理性認(rèn)識,切實經(jīng)歷了一次從特殊歸納出一般的過程體驗。
(三) 學(xué)生探索、領(lǐng)會定義
探究3 下列函數(shù)圖象具有奇偶性嗎?
設(shè)計意圖:深化對奇偶性概念的理解。強調(diào):函數(shù)具有奇偶性的前提條件是--定義域關(guān)于原點對稱。(突破了本節(jié)課的難點)
。ㄋ模┲R應(yīng)用,鞏固提高
在這一環(huán)節(jié)我設(shè)計了4道題
例1判斷下列函數(shù)的奇偶性
選例1的第(1)及(3)小題板書來示范解題步驟,其他小題讓學(xué)生在下面完成。
例1設(shè)計意圖是歸納出判斷奇偶性的步驟:
(1) 先求定義域,看是否關(guān)于原點對稱;
(2) 再判斷f(-x)=-f(x) 還是 f(-x)=f(x)。
例2 判斷下列函數(shù)的奇偶性:
例3 判斷下列函數(shù)的奇偶性:
例2、3設(shè)計意圖是探究一個函數(shù)奇偶性的可能情況有幾種類型?
例4(1)判斷函數(shù)的奇偶性。
。2)如圖給出函數(shù)圖象的一部分,你能根據(jù)函數(shù)的奇偶性畫出它在y軸左邊的圖象嗎?
例4設(shè)計意圖加強函數(shù)奇偶性的幾何意義的應(yīng)用。
在這個過程中,我重點關(guān)注了學(xué)生的推理過程的表述。通過這些問題的解決,學(xué)生對函數(shù)的奇偶性認(rèn)識、理解和應(yīng)用都能提升很大一個高度,達(dá)到當(dāng)堂消化吸收的效果。
。ㄎ澹┛偨Y(jié)反饋
在以上課堂實錄中充分展示了教法、學(xué)法中的互動模式,問題貫穿于探究過程的始終,切實體現(xiàn)了啟發(fā)式、問題式教學(xué)法的特色。
在本節(jié)課的最后對知識點進(jìn)行了簡單回顧,并引導(dǎo)學(xué)生總結(jié)出本節(jié)課應(yīng)積累的解題經(jīng)驗。知識在于積累,而學(xué)習(xí)數(shù)學(xué)更在于知識的應(yīng)用經(jīng)驗的積累。所以提高知識的應(yīng)用能力、增強錯誤的預(yù)見能力是提高數(shù)學(xué)綜合能力的很重要的策略。
。┓謱幼鳂I(yè),學(xué)以致用
必做題:課本第36頁練習(xí)第1-2題。
選做題:課本第39頁習(xí)題1、3A組第6題。
思考題:課本第39頁習(xí)題1、3B組第3題。
設(shè)計意圖:面向全體學(xué)生,注重個人差異,加強作業(yè)的針對性,對學(xué)生進(jìn)行分層作業(yè),既使學(xué)生掌握基礎(chǔ)知識,又使學(xué)有余力的學(xué)生有所提高,進(jìn)一步達(dá)到不同的人在數(shù)學(xué)上得到不同的發(fā)展。
高中數(shù)學(xué)說課稿 篇6
一、說教材:
1、教材的地位與作用
導(dǎo)數(shù)是微積分的核心概念之一,它為研究函數(shù)提供了有效的方法. 在前面幾節(jié)課里學(xué)生對導(dǎo)數(shù)的概念已經(jīng)有了充分的認(rèn)識,本節(jié)課教材從形的角度即割線入手,用形象直觀的“逼近”方法定義了切線,獲得導(dǎo)數(shù)的幾何意義,更有利于學(xué)生理解導(dǎo)數(shù)概念的本質(zhì)內(nèi)涵. 這節(jié)課可以利用幾何畫板進(jìn)行動畫演示,讓學(xué)生通過觀察、思考、發(fā)現(xiàn)、思維、運用形成完整概念. 通過本節(jié)的學(xué)習(xí),可以幫助學(xué)生更好的體會導(dǎo)數(shù)是研究函數(shù)的單調(diào)性、變化快慢等性質(zhì)最有效的工具,是本章的關(guān)鍵內(nèi)容。
2、教學(xué)的重點、難點、關(guān)鍵
教學(xué)重點:導(dǎo)數(shù)的幾何意義、切線方程的求法以及“數(shù)形結(jié)合,逼近”的思想方法。
教學(xué)難點:理解導(dǎo)數(shù)的幾何意義的本質(zhì)內(nèi)涵
1) 從割線到切線的過程中采用的逼近方法;
2) 理解導(dǎo)數(shù)的概念,將多方面的意義聯(lián)系起來,例如,導(dǎo)數(shù)反映了函數(shù)f(x)在點x附近的變化快慢,導(dǎo)數(shù)是曲線上某點切線的斜率,等等.
二、說教學(xué)目標(biāo):
根據(jù)新課程標(biāo)準(zhǔn)的要求、學(xué)生的認(rèn)知水平,確定教學(xué)目標(biāo)如下:
1、知識與技能 :
通過實驗探求理解導(dǎo)數(shù)的幾何意義,理解曲線在一點的切線的概念,會求簡單函數(shù)在某點的切線方程。
過程與方法:
經(jīng)歷切線定義的形成過程,培養(yǎng)學(xué)生分析、抽象、概括等思維能力;體會導(dǎo)數(shù)的思想及內(nèi)涵,完善對切線的認(rèn)識和理解
通過逼近、數(shù)形結(jié)合思想的具體運用,使學(xué)生達(dá)到思維方式的遷移,了解科學(xué)的思維方法。
3、情感態(tài)度與價值觀:
滲透逼近、數(shù)形結(jié)合、以直代曲等數(shù)學(xué)思想,激發(fā)學(xué)生學(xué)習(xí)興趣,引導(dǎo)學(xué)生領(lǐng)悟特殊與一般、有限與無限,量變與質(zhì)變的辯證關(guān)系,感受數(shù)學(xué)的統(tǒng)一美,意識到數(shù)學(xué)的應(yīng)用價值
三、說教法與學(xué)法
對于直線來說它的導(dǎo)數(shù)就是它的斜率,學(xué)生會很自然的思考導(dǎo)數(shù)在函數(shù)圖像上是不是有很特殊的幾何意義。而且剛剛學(xué)過了圓錐曲線,學(xué)生對曲線的切線的概念也有了一些認(rèn)識,基于以上學(xué)情分析,我確定下列教法:
教法:從圓的切線的定義引入本課,再引導(dǎo)學(xué)生討論一般曲線的切線的定義,通過幾何畫板的動畫演示,得出曲線的切線的“逼近”法的定義.同樣通過幾何畫板的實驗觀察得到導(dǎo)數(shù)的幾何意義和直觀感知“逼近”的數(shù)學(xué)思想.因此,我采用實驗觀察法、探究性研究教學(xué)和信息技術(shù)輔助教學(xué)法相結(jié)合,以突出重點和突破難點;
學(xué)法:為了發(fā)揮學(xué)生的主觀能動性,提高學(xué)生的綜合能力,本節(jié)課采取了
自主 、合作、探究的學(xué)習(xí)方法。
教具: 幾何畫板、幻燈片
四、說教學(xué)程序
1.創(chuàng)設(shè)情境
學(xué)生活動——問題系列
問題1 平面幾何中我們是怎樣判斷直線是否是圓的割線或切線的呢?
問題2 如圖直線l是曲線C的切線嗎?
(1)與 (2)與 還有直線與雙曲線的位置關(guān)系
問題3 那么對于一般的曲線,切線該如何定義呢?
【設(shè)計意圖】:通過類比構(gòu)建認(rèn)知沖突。
學(xué)生活動——復(fù)習(xí)回顧
導(dǎo)數(shù)的定義
【設(shè)計意圖】:從理論和知識基礎(chǔ)兩方面為本節(jié)課作鋪墊。
2.探索求知
學(xué)生活動——試驗探究
問一;求導(dǎo)數(shù)的步驟是怎樣的?
第一步:求平均變化率;第二步:當(dāng)趨近于0時,平均變化率無限趨近于的常數(shù)就是。
【設(shè)計意圖】:這是從“數(shù)”的角度描述導(dǎo)數(shù),為探究導(dǎo)數(shù)的幾何意義做準(zhǔn)備。
問二;你能借助圖像說說平均變化率表示什么嗎?請在函數(shù)圖像中畫出來。
【設(shè)計意圖】:通過學(xué)生動手實踐得到平均變化率表示割線PQ的斜率。
問三;在的過程中,你能描述一下割線PQ的變化情況嗎?請在圖像中畫出來。
【設(shè)計意圖】:分別從“數(shù)”和“形”的角度描述的過程情況。從數(shù)的角度看,,Q();從形的角度看, 的過程中,Q點向P點無限趨近,割線PQ趨近于確定的位置,這個位置的直線叫做曲線在 處的切線。
探究一:學(xué)生通過幾何畫板的演示觀察割線的變化趨勢,教師引導(dǎo)給出一般曲線的切線定義。
【設(shè)計意圖】: 借助多媒體教學(xué)手段引導(dǎo)學(xué)生發(fā)現(xiàn)導(dǎo)數(shù)的幾何意義,使問題變得直觀,易于突破難點;學(xué)生在過程中,可以體會逼近的思想方法。能夠同時從數(shù)與形兩個角度強化學(xué)生對導(dǎo)數(shù)概念的理解。
問四;你能從上述過程中概括出函數(shù)在處的導(dǎo)數(shù)的幾何意義嗎?
【設(shè)計意圖】:引導(dǎo)學(xué)生發(fā)現(xiàn)并說出:,割線PQ切線PT,所以割線
PQ的斜率切線PT的斜率。因此,=切線PT的斜率。
五、教學(xué)評價
1、通過學(xué)生參加活動是否積極主動,能否與他人合作探索,對學(xué)生的學(xué)習(xí)過程評價;
2、通過學(xué)生對方法的選擇,對學(xué)生的學(xué)習(xí)能力評價;
3、通過練習(xí)、課后作業(yè),對學(xué)生的學(xué)習(xí)效果評價.
4、教學(xué)中,學(xué)生以研究者的身份學(xué)習(xí),在問題解決的過程中,通過自身的體驗對知識的認(rèn)識從模糊到清晰,從直觀感悟到精確掌握;
5、本節(jié)課設(shè)計目標(biāo)力求使學(xué)生體會微積分的基本思想,感受近似與精確的統(tǒng)一,運動和靜止的統(tǒng)一,感受量變到質(zhì)變的轉(zhuǎn)化。希望利用這節(jié)課滲透辨證法的思想精髓.
高中數(shù)學(xué)說課稿 篇7
一.教材分析:集合概念及其基本理論,稱為集合論,是近、現(xiàn)代數(shù)學(xué)的一個重要的基礎(chǔ),一方面,許多重要的數(shù)學(xué)分支,都建立在集合理論的基礎(chǔ)上。另一方面,集合論及其所反映的數(shù)學(xué)思想,在越來越廣泛的領(lǐng)域種得到應(yīng)用。
二.目標(biāo)分析:
教學(xué)重點.難點
重點:集合的含義與表示方法.
難點:表示法的恰當(dāng)選擇.
教學(xué)目標(biāo)
l.知識與技能
(1)通過實例,了解集合的含義,體會元素與集合的屬于關(guān)系;
(2)知道常用數(shù)集及其專用記號;
(3)了解集合中元素的確定性.互異性.無序性;
(4)會用集合語言表示有關(guān)數(shù)學(xué)對象;
2.過程與方法
(1)讓學(xué)生經(jīng)歷從集合實例中抽象概括出集合共同特征的過程,感知集合的含義.
(2)讓學(xué)生歸納整理本節(jié)所學(xué)知識.
3.情感.態(tài)度與價值觀
使學(xué)生感受到學(xué)習(xí)集合的必要性,增強學(xué)習(xí)的積極性.
三.教法分析
1.教學(xué)方法:學(xué)生通過閱讀教材,自主學(xué)習(xí).思考.交流.討論和概括,從而更好地完成本節(jié)課的教學(xué)目標(biāo).
2.教學(xué)手段:在教學(xué)中使用投影儀來輔助教學(xué).
四.過程分析
(一)創(chuàng)設(shè)情景,揭示課題
1.教師首先提出問題:(1)介紹自己的家庭、原來就讀的學(xué)校、現(xiàn)在的班級。
(2)問題:像"家庭"、"學(xué)校"、"班級"等,有什么共同特征?
引導(dǎo)學(xué)生互相交流.與此同時,教師對學(xué)生的活動給予評價.
2.活動:(1)列舉生活中的集合的例子;
(2)分析、概括各實例的共同特征
由此引出這節(jié)要學(xué)的內(nèi)容。
設(shè)計意圖:既激發(fā)了學(xué)生濃厚的學(xué)習(xí)興趣,又為新知作好鋪墊
。ǘ┭刑叫轮,建構(gòu)概念
1.教師利用多媒體設(shè)備向?qū)W生投影出下面7個實例:
(1)1-20以內(nèi)的所有質(zhì)數(shù);
(2)我國古代的四大發(fā)明;
(3)所有的安理會常任理事國;
(4)所有的正方形;
(5)海南省在xxxx年9月之前建成的所有立交橋;
(6)到一個角的兩邊距離相等的所有的點;
(7)國興中學(xué)xxxx年9月入學(xué)的高一學(xué)生的全體.
2.教師組織學(xué)生分組討論:這7個實例的共同特征是什么?
3.每個小組選出--位同學(xué)發(fā)表本組的討論結(jié)果,在此基礎(chǔ)上,師生共同概括出7個實例的特征,并給出集合的含義.
一般地,指定的某些對象的全體稱為集合(簡稱為集).集合中的每個對象叫作這個集合的元素.
4.教師指出:集合常用大寫字母A,B,c,D,...表示,元素常用小寫字母...表示.
設(shè)計意圖:通過實例讓學(xué)生感受集合的概念,激發(fā)學(xué)習(xí)的興趣,培養(yǎng)學(xué)生樂于求索的精神
(三)質(zhì)疑答辯,發(fā)展思維
1.教師引導(dǎo)學(xué)生閱讀教材中的相關(guān)內(nèi)容,思考:集合中元素有什么特點?并注意個別輔導(dǎo),解答學(xué)生疑難.使學(xué)生明確集合元素的三大特性,即:確定性.互異性和無序性.只要構(gòu)成兩個集合的元素是一樣的,我們就稱這兩個集合相等.
2.教師組織引導(dǎo)學(xué)生思考以下問題:
判斷以下元素的全體是否組成集合,并說明理由:
(1)大于3小于11的偶數(shù);
(2)我國的小河流.
讓學(xué)生充分發(fā)表自己的建解.
3.讓學(xué)生自己舉出一些能夠構(gòu)成集合的例子以及不能構(gòu)成集合的例子,并說明理由.教師對學(xué)生的學(xué)習(xí)活動給予及時的評價.
4.教師提出問題,讓學(xué)生思考
(1)如果用A表示高-(3)班全體學(xué)生組成的集合,用表示高一(3)班的一位同學(xué),是高一(4)班的一位同學(xué),那么與集合A分別有什么關(guān)系?由此引導(dǎo)學(xué)生得出元素與集合的關(guān)系有兩種:屬于和不屬于.[來源:Z,xx,k.com]
如果是集合A的元素,就說屬于集合A,記作.
如果不是集合A的元素,就說不屬于集合A,記作.
(2)如果用A表示"所有的安理會常任理事國"組成的集合,則中國.日本與集合A的關(guān)系分別是什么?請用數(shù)學(xué)符號分別表示.
(3)讓學(xué)生完成教材第6頁練習(xí)第1題.
5.教師引導(dǎo)學(xué)生回憶數(shù)集擴(kuò)充過程,然后閱讀教材中的相交內(nèi)容,寫出常用數(shù)集的記號.并讓學(xué)生完成習(xí)題1.1A組第1題.
6.教師引導(dǎo)學(xué)生閱讀教材中的相關(guān)內(nèi)容,并思考.討論下列問題:
(1)要表示一個集合共有幾種方式?
(2)試比較自然語言.列舉法和描述法在表示集合時,各自有什么特點?適用的對象是什么?
(3)如何根據(jù)問題選擇適當(dāng)?shù)募媳硎痉?
使學(xué)生弄清楚三種表示方式的優(yōu)缺點和體會它們存在的必要性和適用對象。
設(shè)計意圖:明確集合元素的三大特性,使學(xué)生弄清楚三種表示方式的優(yōu)缺點,從而突破難點。
(四)鞏固深化,反饋矯正
教師投影學(xué)習(xí):
(1)用自然語言描述集合{1,3,5,7,9};
(2)用例舉法表示集合
(3)試選擇適當(dāng)?shù)姆椒ū硎鞠铝屑希航滩牡?頁練習(xí)第2題.
設(shè)計意圖:使學(xué)生及時鞏固所學(xué)新知,體會三種表示方式存在的必要性和適用對象
(五)歸納小結(jié),布置作業(yè)[來源:Zxxk.com]
小結(jié):在師生互動中,讓學(xué)生了解或體會下例問題:
1.本節(jié)課我們學(xué)習(xí)了哪些知識內(nèi)容?
2.你認(rèn)為學(xué)習(xí)集合有什么意義?
3.選擇集合的表示法時應(yīng)注意些什么?
設(shè)計意圖:通過回顧,對概念的發(fā)生與發(fā)展過程有清晰的認(rèn)識,回顧集合元素的三大特性及集合的三種表示方式。
作業(yè):
1.課后書面作業(yè):第13頁習(xí)題1.1A組第4題.
2.元素與集合的關(guān)系有多少種?如何表示?類似地集合與集合間的關(guān)系又有多少種呢?如何表示?請同學(xué)們通過預(yù)習(xí)教材.
五.板書分析
PPT
集合的含義與表示
定義例1
集合×××××××
××××××××××××××
元素×××××××
×××××××例2
元素與集合的關(guān)系×××××××
××××××××××××××
作業(yè)××××××××××××××
高中數(shù)學(xué)說課稿 篇8
我將從教學(xué)理念;教材分析;教學(xué)目標(biāo);教學(xué)過程;教法、學(xué)法;教學(xué)評價六個方面來陳述我對本節(jié)課的設(shè)計方案。
一、教學(xué)理念
新的課程標(biāo)準(zhǔn)明確指出“數(shù)學(xué)是人類文化的重要組成部分,構(gòu)成了公民所必須具備的一種基本素質(zhì)!逼浜x就是:我們不僅要重視數(shù)學(xué)的應(yīng)用價值,更要注重其思維價值和人文價值。
因此,創(chuàng)造性地使用教材,積極開發(fā)、利用各種教學(xué)資源,創(chuàng)設(shè)教學(xué)情境,讓學(xué)生通過主動參與、積極思考、與人合作交流和創(chuàng)新等過程,獲得情感、能力、知識的全面發(fā)展。本節(jié)課力圖打破常規(guī),充分體現(xiàn)以學(xué)生為本,全方位培養(yǎng)、提高學(xué)生素質(zhì),實現(xiàn)課程觀念、教學(xué)方式、學(xué)習(xí)方式的轉(zhuǎn)變。
二、教材分析
三角函數(shù)是中學(xué)數(shù)學(xué)的重要內(nèi)容之一,它既是解決生產(chǎn)實際問題的工具,又是學(xué)習(xí)高等數(shù)學(xué)及其它學(xué)科的基礎(chǔ)。本節(jié)課是在學(xué)習(xí)了任意角的三角函數(shù),兩角和與差的三角函數(shù)以及正、余弦函數(shù)的圖象和性質(zhì)后,進(jìn)一步研究函數(shù)y=Asin(ωx+φ)的簡圖的畫法,由此揭示這類函數(shù)的圖象與正弦曲線的關(guān)系,以及A、ω、φ的物理意義,并通過圖象的變化過程,進(jìn)一步理解正、余弦函數(shù)的性質(zhì),它是研究函數(shù)圖象變換的一個延伸,也是研究函數(shù)性質(zhì)的一個直觀反映。共3課時,本節(jié)課是繼學(xué)習(xí)完振幅、周期、初相變換后的第二課時。
本節(jié)課倡導(dǎo)學(xué)生自主探究,在教師的引導(dǎo)下,通過五點作圖法正確找出函數(shù)y=sinx到y(tǒng)=sin(ωx+φ)的圖象變換規(guī)律是本節(jié)課的重點。
難點是對周期變換、相位變換先后順序調(diào)整后,將影響圖象平移量的理解。因此,分析清不管哪種順序變換,都是對一個字母x而言的變換成為突破本節(jié)課教學(xué)難點的關(guān)鍵。
依據(jù)《課標(biāo)》,根據(jù)本節(jié)課內(nèi)容和學(xué)生的實際,我確定如下教學(xué)目標(biāo)。
三、教學(xué)目標(biāo)
。壑R與技能]
通過“五點作圖法”正確找出函數(shù)y=sinx到y(tǒng)=sin(ωx+φ)的圖象變換規(guī)律,能用五點作圖法和圖象變換法畫出函數(shù)y=Asin(ωx+φ)的簡圖,能舉一反三地畫出函數(shù)y=Asin(ωx+φ)+k和y=Acos(ωx+φ)的簡圖。
。圻^程與方法]
通過引導(dǎo)學(xué)生對函數(shù)y=sinx到y(tǒng)=sin(ωx+φ)的圖象變換規(guī)律的探索,讓學(xué)生體會到由簡單到復(fù)雜,特殊到一般的化歸思想;并通過對周期變換、相位變換先后順序調(diào)整后,將影響圖象變換這一難點的突破,讓學(xué)生學(xué)會抓住問題的主要矛盾來解決問題的基本思想方法。
。矍楦袘B(tài)度與價值觀]
課堂中,通過對問題的自主探究,培養(yǎng)學(xué)生的獨立意識和獨立思考能力;小組交流中,學(xué)會合作意識;在解決問題的難點時,培養(yǎng)學(xué)生解決問題抓主要矛盾的思想。在問題逐步深入的研究中喚起學(xué)生追求真理,樂于創(chuàng)新的情感需求,引發(fā)學(xué)生渴求知識的強烈愿望,樹立科學(xué)的人生觀、價值觀。
四、教學(xué)過程(六問三練)
1、設(shè)置情境
《函數(shù)y=Asin(ωx+φ)的圖象(第二課時)》說課稿。
【精選高中數(shù)學(xué)說課稿范文集合8篇】相關(guān)文章:
精選高中數(shù)學(xué)說課稿范文集合5篇08-14
精選高中數(shù)學(xué)說課稿范文集合七篇08-20
高中數(shù)學(xué)經(jīng)典說課稿范文06-24