亚洲国产日韩欧美在线a乱码,国产精品路线1路线2路线,亚洲视频一区,精品国产自,www狠狠,国产情侣激情在线视频免费看,亚洲成年网站在线观看

高中數(shù)學說課稿

時間:2021-07-31 14:05:39 高中說課稿 我要投稿

實用的高中數(shù)學說課稿集錦六篇

  作為一名教學工作者,時常會需要準備好說課稿,是說課取得成功的前提。那么應當如何寫說課稿呢?下面是小編為大家整理的高中數(shù)學說課稿6篇,希望對大家有所幫助。

實用的高中數(shù)學說課稿集錦六篇

高中數(shù)學說課稿 篇1

  說課目標

  (1)知識目標:掌握拋物線的定義,掌握拋物線的四種標準方程形式,及其對應的焦點、準線。

  (2)能力目標:通過對拋物線概念和標準方程的學習,培養(yǎng)學生分析和概括的能力,提高建立坐標系的能力,由圓錐曲線的統(tǒng)一定義,形成學生對事物運動變化、對立、統(tǒng)一的辨證唯物主義觀點。

  (3)德育目標:通過拋物線概念和標準方程的學習,培養(yǎng)學生勇于探索、嚴密細致的科學態(tài)度,通過提問、討論、思考等教學活動,調(diào)動學生積極參與教學,培養(yǎng)良好的學習習慣。

  教學重點:(1)拋物線的定義及焦點、準線;

  (2)利用坐標法求出拋物線的四種標準方程;

  (3)會根據(jù)拋物線的焦點坐標,準線方程求拋物線的標準方程。

  教學難點:(1)拋物線的四種圖形及標準方程的區(qū)分;

  (2)拋物線定義及焦點、準線等知識的靈活運用。

  說課方法:啟發(fā)引導法(通過橢圓與雙曲線第二定義引出拋物線)。

  依據(jù)建構主義教學原理,通過類比、歸納把新知識化歸到原有的認知結(jié)構中去(二次函數(shù)與拋物線方程的對比,移圖與建立適當建立坐標系的方法的歸納)。

  利用多媒體教學

  說課過程:

  一、課題引入

  利用學生已有知識提問學生:1、橢圓的第二種定義:到定點與到定直線的距離的比是小于1的常數(shù)的點的軌跡是橢圓。(用課件演示)

  2、雙曲線的第二種定義:到定點與到定直線的距離的比是大于1的常數(shù)的點的軌跡是雙曲線。(用課件演示)

  由此引出:到定點的距離和到定直線的距離的比是等于1的常數(shù)的點的軌跡

  是什么?

  (以問題為出發(fā)點,創(chuàng)設情景,提高學生求知欲)

  教師用直尺、三角板和細繩演示,學生觀察所得曲線。

  從而引出本節(jié)課的學習內(nèi)容。

  二、講授新課

  1.對拋物線的初步認識

  物理中拋物線的運動軌跡;數(shù)學中二次函數(shù)的圖象;生活中拋物線的實例(圖片顯示)等。

  2.拋物線的定義

  3.拋物線標準方程的推導:①學生回顧求曲線方程的步驟(建系、設點、列方程);

 、谌艚裹cF和準線的距離為()這樣建立坐標系?由學生思考:可能出現(xiàn)的結(jié)果:

  四、課堂小結(jié)

  1、本節(jié)課的內(nèi)容:拋物線的定義,焦點、準線的意義及四種標準方程;

  2、理解參數(shù)的幾何意義(焦準距)

  3、利用坐標法求曲線方程是坐標系的適當選取。

  課后作業(yè):119頁習題8.52,4

  設計說明:學生在初中學習二次函數(shù)時知道二次函數(shù)的圖象是一個拋物線,在物理的學習中也接觸過拋物線(物體的運動軌跡)。因而對拋物線的認識比對前面學習的兩種圓錐曲線橢圓和雙曲線更多。所以學生學起來會輕松。但是要注意的是,現(xiàn)在所學的拋物線是方程的曲線而不是函數(shù)的圖象。本節(jié)內(nèi)容是在學習了橢圓和雙曲線的基礎上,利用圓錐曲線的第二定義統(tǒng)一進行展開的,因而對于拋物線的系統(tǒng)學習具有雙重的目標性。

  拋物線作為點的軌跡,其標準方程的推導過程充滿了辨證法,處處是數(shù)與形之間的對照和相互轉(zhuǎn)化。而要得到拋物線的標準方程,必須建立適當?shù)淖鴺讼,還要依賴焦點和準線的相互位置關系,這是拋物線標準方程有四種而不象橢圓和雙曲線只有兩種形式。因而拋物線的標準方程的推導也是培養(yǎng)辨證唯物主義觀點的好素材。

  利用圓錐曲線第二定義通過類比方法,引導學生觀察和對比,啟發(fā)學生猜想與概括,利用建立坐標系求出拋物線的四種標準方程,讓每一個學生都能動手,動口,動腦參與教學過程,真正貫徹“教師為主導,學生為主體”的教學思想。對于標準方程中的參數(shù)及其幾何意義,焦點坐標和準線方程與的關系是本節(jié)課的重點內(nèi)容,必須讓學生掌握如何根據(jù)標準方程求、焦點坐標、準線方程或根據(jù)后三者求拋物線的標準方程。特別對于一些有關距離的問題,要能靈活運用拋物線的定義給予解決。

  當前素質(zhì)教育的主流是培養(yǎng)學生的能力,讓學生學會學習。本節(jié)課采用學生通過探索、觀察、對比分析,自己發(fā)現(xiàn)結(jié)論的學習方法,培養(yǎng)了學生邏輯思維能力,動手實踐能力以及探索的精神。

高中數(shù)學說課稿 篇2

  一、教學目標

  1.掌握任意角的正弦、余弦、正切函數(shù)的定義(包括定義域、正負符號判斷);了解任意角的余切、正割、余割函數(shù)的定義.

  2.經(jīng)歷從銳角三角函數(shù)定義過度到任意角三角函數(shù)定義的推廣過程,體驗三角函數(shù)概念的產(chǎn)生、發(fā)展過程.領悟直角坐標系的工具功能,豐富數(shù)形結(jié)合的經(jīng)驗.

  3.培養(yǎng)學生通過現(xiàn)象看本質(zhì)的唯物主義認識論觀點,滲透事物相互聯(lián)系、相互轉(zhuǎn)化的辯證唯物主義世界觀.

  4.培養(yǎng)學生求真務實、實事求是的科學態(tài)度.

  二、重點、難點、關鍵

  重點:任意角的正弦、余弦、正切函數(shù)的定義、定義域、(正負)符號判斷法.

  難點:把三角函數(shù)理解為以實數(shù)為自變量的函數(shù).

  關鍵:如何想到建立直角坐標系;六個比值的確定性(α確定,比值也隨之確定)與依賴性(比值隨著α的變化而變化).

  三、教學理念和方法

  教學中注意用新課程理念處理傳統(tǒng)教材,學生的數(shù)學學習活動不僅要接受、記憶、模仿和練習,而且要自主探索、動手實踐、合作交流、閱讀自學,師生互動,教師發(fā)揮組織者、引導者、合作者的作用,引導學生主體參與、揭示本質(zhì)、經(jīng)歷過程.

  根據(jù)本節(jié)課內(nèi)容、高一學生認知特點和我自己的教學風格,本節(jié)課采用"啟發(fā)探索、講練結(jié)合"的方法組織教學.

  四、教學過程

  [執(zhí)教線索:

  回想再認:函數(shù)的概念、銳角三角函數(shù)定義(銳角三角形邊角關系)--問題情境:能推廣到任意角嗎?--它山之石:建立直角坐標系(為何?)--優(yōu)化認知:用直角坐標系研究銳角三角函數(shù)--探索發(fā)展:對任意角研究六個比值(與角之間的關系:確定性、依賴性,滿足函數(shù)定義嗎?)--自主定義:任意角三角函數(shù)定義--登高望遠:三角函數(shù)的要素分析(對應法則、定義域、值域與正負符號判定)--例題與練習--回顧小結(jié)--布置作業(yè)]

  (一)復習引入、回想再認

  開門見山,面對全體學生提問:

  在初中我們初步學習了銳角三角函數(shù),前幾節(jié)課,我們把銳角推廣到了任意角,學習了角度制和弧度制,這節(jié)課該研究什么呢?

  探索任意角的三角函數(shù)(板書課題),請同學們回想,再明確一下:

 。ㄇ榫1)什么叫函數(shù)?或者說函數(shù)是怎樣定義的?

  讓學生回想后再點名回答,投影顯示規(guī)范的定義,教師根據(jù)回答情況進行修正、強調(diào):

  傳統(tǒng)定義:設在一個變化過程中有兩個變量x與y,如果對于x的每一個值,y都有唯一確定的值和它對應,那么就說y是x的函數(shù),x叫做自變量,自變量x的取值范圍叫做函數(shù)的定義域.

  現(xiàn)代定義:設A、B是非空的數(shù)集,如果按某個確定的對應關系f,使對于集合A中的任意一個數(shù),在集合B中都有唯一確定的數(shù)f(x)和它對應,那么就稱映射?:A→B為從集合A到集合B的一個函數(shù),記作:y=f(x),x∈A,其中x叫自變量,自變量x的取值范圍A叫做函數(shù)的定義域.

  設計意圖:

  函數(shù)和三角函數(shù)是一般和特殊的關系,是共性和個性的關系,學生已經(jīng)學習了函數(shù)的概念,因此對三角函數(shù)的學習就是一個從一般到特殊的演繹的過程,也是以具體函數(shù)豐富函數(shù)概念的過程.教學經(jīng)驗表明:學生對函數(shù)兩種定義的記憶是有一定困難的,容易遺忘,此處讓學生對函數(shù)概念進行回想再認,目的在于明確函數(shù)概念的本質(zhì),為演繹學習任意角三角函數(shù)概念作好知識和認知準備.

 。ㄇ榫2)我們在初中通過銳角三角形的邊角關系,學習了銳角的正弦、余弦、正切等三個三角函數(shù).請回想:這三個三角函數(shù)分別是怎樣規(guī)定的?

  學生口述后再投影展示,教師再根據(jù)投影進行強調(diào):

  設計意圖:

  學生在初中學習了銳角的三角函數(shù)概念,現(xiàn)在學習任意角的三角函數(shù),又是一種推廣和拓展的過程(類似于從有理數(shù)到實數(shù)的擴展).溫故知新,要讓學生體會知識的產(chǎn)生、發(fā)展過程,就要從源頭上開始,從學生現(xiàn)有認知狀況開始,對銳角三角函數(shù)的復習就必不可少.

  (二)引伸鋪墊、創(chuàng)設情景

  (情景3)我們已經(jīng)把銳角推廣到了任意角,銳角的三角函數(shù)概念也能推廣到任意角嗎?試試看,可以獨立思考和探索,也可以互相討論!

  留時間讓學生獨立思考或自由討論,教師參與討論或巡回對學困生作啟發(fā)引導.

  能推廣嗎?怎樣推廣?針對剛才的問題點名讓學生回答.用角的對邊、臨邊、斜邊比值的說法顯然是受到阻礙了,由于4.1節(jié)已經(jīng)以直角坐標系為工具來研究任意角了,學生一般會想到(否則教師進行提示)繼續(xù)用直角坐標系來研究任意角的三角函數(shù).

  設計意圖:

  從學生現(xiàn)有知識水平和認知能力出發(fā),創(chuàng)設問題情景,讓學生產(chǎn)生認知沖突,進行必要的啟發(fā),將學生思維引上自主探索、合作交流的"再創(chuàng)造"征程.

  教師對學生回答情況進行點評后布置任務情景:請同學們用直角坐標系重新研究銳角三角函數(shù)定義!

  師生共做(學生口述,教師板書圖形和比值):

  把銳角α安裝(如何安裝?角的頂點與原點重合,角的始邊與x軸非負半軸重合)在直角坐標系中,在角α終邊上任取一點P,作Pm⊥x軸于m,構造一個RtΔomP,則∠moP=α(銳角),設P(x,y)(x>0、y>0),α的臨邊om=x、對邊mP=y,斜邊長|oP∣=r.

  根據(jù)銳角三角函數(shù)定義用x、y、r列出銳角α的正弦、余弦、正切三個比值,并補充對應列出三個倒數(shù)比值:

  設計意圖:

  此處做法簡單,思想重要.為了順利實現(xiàn)推廣,可以構建中間橋梁或公共載體,使之既與初中的定義一致,又能自然地遷移到任意角的情形.由于前一節(jié)已經(jīng)以直角坐標系為工具來研究任意角了,學生自然能想到仍然以直角坐標系為工具來研究任意角的三角函數(shù).初中以直角三角形邊角關系來定義銳角三角函數(shù),現(xiàn)在要用坐標系來研究,探索的結(jié)論既要滿足任意角的情形,又要包容初中銳角三角函數(shù)定義.這是一個認識的飛躍,是理解任意角三角函數(shù)概念的關鍵之一,也是數(shù)學發(fā)現(xiàn)的重要思想和方法,屬于策略性知識,能夠形成遷移能力,為學生在以后學習中對某些知識進行推廣拓展奠定了基礎(譬如從平面向量到空間向量的擴展,從實數(shù)到復數(shù)的擴展等).

 。ㄇ榫4)各個比值與角之間有怎樣的關系?比值是角的函數(shù)嗎?

  追問:銳角α大小發(fā)生變化時,比值會改變嗎?

  先讓學生想象思考,作出主觀判斷,再用幾何畫板動畫演示,同時作好解釋說明:保持r不變,讓P繞原點o旋轉(zhuǎn)即α在銳角范圍內(nèi)變化,六個比值隨之變化的直觀形象。結(jié)論是:比值隨α的變化而變化.

  引導學生觀察圖3,聯(lián)系相似三角形知識,

  探索發(fā)現(xiàn):

  對于銳角α的每一個確定值,六個比值都是

  確定的.,不會隨P在終邊上的移動而變化.

  得出結(jié)論(強調(diào)):當α為銳角時,六個比值隨α的變化而變化;但對于銳角α的每一個確定值,六個比值都是確定的,不會隨P在終邊上的移動而變化.所以,六個比值分別是以角α為自變量、以比值為函數(shù)值的函數(shù).

  設計意圖:

  初中學生對函數(shù)理解較膚淺,這里在學生思維的最近發(fā)展區(qū)進一步研究初中學過的銳角三角函數(shù),在思維上更上了一個層次,扣準函數(shù)概念的內(nèi)涵,突出變量之間的依賴關系或?qū)P系,是從函數(shù)知識演繹到三角函數(shù)知識的主要依據(jù),是準確理解三角函數(shù)概念的關鍵,也是在認知上把三角函數(shù)知識納入函數(shù)知識結(jié)構的關鍵.這樣做能夠使學生有效地增強函數(shù)觀念.

 。ㄈ┓治鰵w納、自主定義

  (情境5)能將銳角的比值情形推廣到任意角α嗎?

  水到渠成,師生共同進行探索和推廣:

  對于一個任意角α,它的終邊所在位置包括下列兩類共八種情形(投影展示并作分析):

  終邊分別在四個象限的情形:終邊分別在四個半軸上的情形:

 ;

  (指出:不畫出角的方向,表明角具有任意性)

  怎樣刻畫任意角的三角函數(shù)呢?研究它的六個比值:

 。ò鍟┰Oα是一個任意角,在α終邊上除原點外任意取一點P(x,y),P與原點o之間的距離記作r(r=>0),列出六個比值:

  α=kππ/2時,x=0,比值y/x、r/x無意義;

  α=kπ時,y=0,比值x/y、r/y無意義.

  追問:α大小發(fā)生變化時,比值會改變嗎?

  先讓學生想象思考,作出主觀判斷,再用幾何畫板動畫演示,同時作好解釋說明:使r保持不變,P繞原點o逆時針、順時針旋轉(zhuǎn)即角α變化,六個比值隨之改變的直觀形象。結(jié)論是:各比值隨α的變化而變化.

  再引導學生利用相似三角形知識,探索發(fā)現(xiàn):對于任意角α的每一個確定值,六個比值都是確定的,不會隨P在終邊上的移動而變化.

  綜上得到(強調(diào)):當角α變化時,六個比值隨之變化;對于確定的角α,六個比值(如果存在的話)都不會隨P在角α終邊上的改變而改變,六個比值是確定的(對應的多值性即誘導公式一留到下節(jié)課分析).

  因此,六個比值分別是以角α為自變量、以比值為函數(shù)值的函數(shù).

  根據(jù)歷史上的規(guī)定,對比值進行命名,指出英文記法和讀法,記作(承前作復合板書):

  =sinα(正弦)=cosα(余弦)=tanα(正切)

  =cscα(余割)=sec(正弦)=cotα(余切)

  教師強調(diào):sinα表示sin與α的乘積嗎?不是,sinα是函數(shù)記號,是一個整體,相當于函數(shù)記號f(x).其它幾個三角函數(shù)也如此

  投影顯示圖六,指導學生分析其對應關系,進一步體會其函數(shù)內(nèi)涵:

 。▓D六)

  指導學生識記六個比值及函數(shù)名稱.

  教師指出:正弦、余弦、正切、余切、正割、余割六個函數(shù)統(tǒng)稱為三角函數(shù),三角函數(shù)有非常豐富的知識和思想方法,我們以后主要學習正弦、余弦、正切三個函數(shù)的相關知識和方法,對于余切、正割、余割,只要同學們了解它們的定義就夠了(遵循大綱要求).

  引導學生進一步分析理解:

  已知角的集合與實數(shù)集之間可以建立一一對應關系,對于每一個確定的實數(shù),把它看成一個弧度數(shù),就對應著唯一的一個角,從而分別對應著六個唯一的三角函數(shù)值.因此,(板書)三角函數(shù)可以看成是以實數(shù)為自變量的函數(shù),這將為以后的應用帶來很多方便.

  設計意圖:

  把角的終邊分別在四個象限、四條半軸上的情形全作出來,有利于對任意性的全面把握.明確比值存在與否的條件,為確定函數(shù)定義域作準備.動畫演示比值與角之間的依賴性與確定性關系,深化理解三角函數(shù)內(nèi)涵.引導學生在理解的基礎上自主地對三角函數(shù)作出明確定義,是本節(jié)課的中心任務.由于學生剛學弧度制,對弧度制的理解有待于在以后的學習應用中逐步感悟,因此部分學生對"三角函數(shù)可以看成是以實數(shù)為自變量的函數(shù)"的理解有半信半疑之感,有待通過后續(xù)的應用加深理解.

 。ㄋ模┨剿鞫x域

 。ㄇ榫6)(1)函數(shù)概念的三要素是什么?

  函數(shù)三要素:對應法則、定義域、值域.

  正弦函數(shù)sinα的對應法則是什么?

  正弦函數(shù)sinα的對應法則,實質(zhì)上就是sinα的定義:對α的每一個確定的值,有唯一確定的比值y/r與之對應,即α→y/r=sinα.

  (2)布置任務情景:什么是三角函數(shù)的定義域?請求出六個三角函數(shù)的定義域,填寫下表:

  三角函數(shù)

  sinα

  cosα

  tanα

  cotα

  cscα

  secα

  定義域

  引導學生自主探索:

  如果沒有特別說明,那么使解析式有意義的自變量的取值范圍叫做函數(shù)的定義域,三角函數(shù)的定義域自然是指:使比值有意義的角α的取值范圍.

  關于sinα=y/r、cosα=x/r,對于任意角α(弧度數(shù)),r>0,y/r、x/r恒有意義,定義域都是實數(shù)集R.

  對于tanα=y/x,α=kππ/2時x=0,y/x無意義,tanα的定義域是:{α|α∈R,且α≠kππ/2}..........

  教師指出:sinα、cosα、tanα的定義域必須緊扣三角函數(shù)定義在理解的基礎上記熟,cotα、cscα、secα的定義域不要求記憶.

 。P于值域,到后面再學習).

  設計意圖:

  定義域是函數(shù)三要素之一,研究函數(shù)必須明確定義域.指導學生根據(jù)定義自主探索確定三角函數(shù)定義域,有利于在理解的基礎上記住它、應用它,也增進對三角函數(shù)概念的掌握.

  (五)符號判斷、形象識記

 。ㄇ榫7)能判斷三角函數(shù)值的正、負嗎?試試看!

  引導學生緊緊抓住三角函數(shù)定義來分析,r>0,三角函數(shù)值的符號決定于x、y值的正負,根據(jù)終邊所在位置總結(jié)出形象的識記口訣:

 。ㄍ玫谜、異號得負)

  sinα=y/r:上正下負橫為0cosα=x/r:左負右正縱為0tanα=y/x:交叉正負

  設計意圖:

  判斷三角函數(shù)值的正負符號,是本章教材的一項重要的知識、技能要求.要引導學生抓住定義、數(shù)形結(jié)合判斷和記憶三角函數(shù)值的正負符號,并總結(jié)出形象的識記口訣,這也是理解和記憶的關鍵.

 。┚毩曥柟、理解記憶

  1、自學例1:已知角α的終邊經(jīng)過點P(2,-3),求α的六個三角函數(shù)值.

  要求:讀完題目,思考:計算什么?需要準備什么?閉目心算,對照解答,模仿書面表達格式,鞏固定義.

  課堂練習:

  p19題1:已知角α的終邊經(jīng)過點P(-3,-1),求α的六個三角函數(shù)值.

  要求心算,并提問中下學生檢驗,--------

  點評:角α終邊上有無窮多個點,根據(jù)三角函數(shù)的定義,只要知道α終邊上任意一個點的坐標,就可以計算這個角的三角函數(shù)值(或判斷其無意義).

  補充例題:已知角α的終邊經(jīng)過點P(x,-3),cosα=4/5,求α的其它五個三角函數(shù)值.

  師生探索:已知y=-3,要求其它五個三角函數(shù)值,須知r=?,x=?.根據(jù)定義得=(方程思想),x>0,解得x=4,從而--------.解答略.

  2、自學例2:求下列各角的六個三角函數(shù)值:(1)0;(2)π/2;(3)3π/2.

  提問,據(jù)反饋信息作點評、修正.

  師生探索:緊扣三角函數(shù)定義求解,首先要在終邊上取定一點。終邊在哪兒呢?取定哪一點呢?任意點、還是特殊點?要靈活,只要能夠算出三角函數(shù)值,都可以。

  取特殊點能使計算更簡明。課堂練習:p19題2.(改編)填表:

  角α(角度)

  0°

  90°

  180°

  270°

  360°

  角α(弧度)

  sinα

  cosα

  tanα

  處理:要求取點用定義求解,針對計算過程提問、點評,理解鞏固定義.

  強調(diào):終邊在坐標軸上的角叫軸線角,如0、π/2、π、3π/2等,今后經(jīng)常用到軸線角的三角函數(shù)值,要結(jié)合三角函數(shù)定義記熟這些值.

  設計意圖:

  及時安排自學例題、自做教材練習題,一般性與特殊性相結(jié)合,進行適量的變式練習,以鞏固和加深對三角函數(shù)概念的理解,通過課堂積極主動的練習活動進行思維訓練,把"培養(yǎng)學生分析解決問題的能力"貫穿在每一節(jié)課的課堂教學始終.

 。ㄆ撸┗仡櫺〗Y(jié)、建構網(wǎng)絡

  要求全體學生根據(jù)教師所提問題進行總結(jié)識記,提問檢查并強調(diào):

  1.你是怎樣把銳角三角函數(shù)定義推廣到任意角的?或者說任意角三角函數(shù)具體是怎樣定義的?(建立直角坐標系,使角的頂點與坐標原點重合,---,在終邊上任意取定一點P,---)

  2.你如何判斷和記憶正弦、余弦、正切函數(shù)的定義域?(根據(jù)定義,------)

  3.你如何記憶正弦、余弦、正切函數(shù)值的符號?(根據(jù)定義,想象坐標位置,-----)

  設計意圖:

  遺忘的規(guī)律是先快后慢,回顧再現(xiàn)是記憶的重要途徑,在課堂內(nèi)及時總結(jié)識記主要內(nèi)容是上策.此處以問題形式讓學生自己歸納識記本節(jié)課的主體內(nèi)容,抓住要害,人人參與,及時建構知識網(wǎng)絡,優(yōu)化知識結(jié)構,培養(yǎng)認知能力.

 。ò耍┎贾谜n外作業(yè)

  1.書面作業(yè):習題4.3第3、4、5題.

  2.認真閱讀p22"閱讀材料:三角函數(shù)與歐拉",了解歐拉的生平和貢獻,特別學習他對科學的摯著精神和堅忍不拔的頑強毅力!有興趣的同學可以上網(wǎng)查閱歐拉的相關情況.

  教學設計說明

  一、對本節(jié)教材的理解

  三角函數(shù)是描述周期運動現(xiàn)象的重要的數(shù)學模型,有非常廣泛的應用.

  星星之火,可以燎原.

  直角三角形簡單樸素的邊角關系,以直角坐標系為工具進行自然地推廣而得到簡明的任意角的三角函數(shù)定義,緊緊扣住三角函數(shù)定義這個寶貴的源泉,自然地導出三角函數(shù)線、定義域、符號判斷、值域、同角三角函數(shù)關系、多組誘導公式、多組變換公式、輔助角公式、圖象和性質(zhì),本章教材就是這些內(nèi)容的具體安排.定義直接用于解析幾何(如直線斜率公式、極坐標、部分曲線的參數(shù)方程等),定義還是直接解決某些問題的工具,三角函數(shù)知識是物理學、高等數(shù)學、測量學、天文學的重要基礎.

  三角函數(shù)定義必然是學好全章內(nèi)容的關鍵,如果學生掌握不好,將直接影響到后續(xù)內(nèi)容的學習,由三角函數(shù)定義的基礎性和應用的廣泛性決定了本節(jié)教材的重點就是定義本身.

  二、教學法加工

  數(shù)學教材通常用抽象概括的形式化的數(shù)學書面語言闡述其知識和方法,教師只有通過教學法加工,始終貫徹"以學生的發(fā)展為本"的科學教育觀,"將數(shù)學的學術形態(tài)轉(zhuǎn)化為教育形態(tài)"(張奠宙語),引導學生積極主動地進行思考活動,直接參與體驗數(shù)學知識產(chǎn)生發(fā)展的背景、過程,返璞歸真,揭示本質(zhì),體會其中的思想和方法,學生只有這樣才能真正理解掌握數(shù)學知識和方法,有效地發(fā)展智力、培養(yǎng)能力.

  在本節(jié)教材中,三角函數(shù)定義是重點,三角函數(shù)線是難點,為了較好地突出重點和突破難點,分散重點和難點,同時兼顧例題、課堂練習的協(xié)調(diào)匹配,將不按教材順序來進行教學,第一課時安排三角函數(shù)的定義(突出重點)、定義域、符號判斷、例題1、2及p19課堂練習1、2、3,第二課時安排三角函數(shù)線、p15練習(突破難點)、誘導公式一及課本例題3、4和其它練習.本課例屬第一課時.

  教學經(jīng)驗表明,三角函數(shù)定義"簡單易記",學生很容易輕視它,不少學生機械記憶、一知半解.本課例堅持"教師主導、學生主體"的原則,采用"啟發(fā)探索、講練結(jié)合"的常規(guī)教學方法,在學生的最近發(fā)展區(qū)圍繞學生的學習目標設計了一系列符合學生認知規(guī)律的程序,通過多媒體輔助教學動畫演示比值與角之間的依賴關系,拓展思維活動時空,力求使學生全員主動參與,積極思考,體會定義產(chǎn)生、發(fā)展的過程,通過思維過程來理解知識、培養(yǎng)能力.

  將六個比值放在一起來研究,同時給出六個三角函數(shù)的定義,能夠增強對比感和整體感,至于大綱對兩組函數(shù)掌握與了解的不同要求,在下一步的教學中注意區(qū)分就行了.

  教學中關于符號sinα、cosα、tanα的出場安排,教材首先對比值取名并給出英文記法,再研究它們與α的函數(shù)關系;另外可以先研究六個比值與α之間的函數(shù)關系,然后再對六個比值取名給出記法.后者更能突出函數(shù)內(nèi)涵,揭示三角函數(shù)本質(zhì).本課例采用后者組織教學.

  三、教學過程分析(見穿插在教案中的設計意圖).

高中數(shù)學說課稿 篇3

  一、教材分析(說教材):

  1. 教材所處的地位和作用:

  本節(jié)內(nèi)容在全書和章節(jié)中的作用是:《 》是 中數(shù)學教材第 冊第 章第 節(jié)內(nèi)容。在此之前學生已學習了 基礎,這為過渡到本節(jié)的學習起著鋪墊作用。本節(jié)內(nèi)容是在 中,占據(jù) 的地位。以及為其他學科和今后的學習打下基礎。

  2. 教育教學目標:

  根據(jù)上述教材分析,考慮到學生已有的認知結(jié)構心理特征,制定如下教學目標:

  (1)知識目標:

  (2)能力目標:通過教學初步培養(yǎng)學生分析問題,解決實際問題,讀圖分析,收集處理信息,團結(jié)協(xié)作,語言表達能力以及通過師生雙邊活動,初步培養(yǎng)學生運用知識的能力,培養(yǎng)學生加強理論聯(lián)系實際的能力,(3)情感目標:通過 的教學引導學生從現(xiàn)實的生活經(jīng)歷與體驗出發(fā),激發(fā)學生學習興趣。

  3. 重點,難點以及確定依據(jù):

  下面,為了講清重難上點,使學生能達到本節(jié)課設定的目標,再從教法和學法上談談:

  二、教學策略(說教法)

  1. 教學手段:

  如何突出重點,突破難點,從而實現(xiàn)教學目標。在教學過程中擬計劃進行如下操作:教學方法;诒竟(jié)課的特點: 應著重采用 的教學方法。

  2. 教學方法及其理論依據(jù):堅持“以學生為主體,以教師為主導”的原則,根據(jù)學生的心理發(fā)展規(guī)律,采用學生參與程度高的學導式討論教學法。在學生看書,討論的基礎上,在老師啟發(fā)引導下,運用問題解決式教法,師生交談法,圖像信號法,問答式,課堂討論法。在采用問答法時,特別注重不同難度的問題,提問不同層次的學生,面向全體,使基礎差的學生也能有表現(xiàn)機會,培養(yǎng)其自信心,激發(fā)其學習熱情。有效的開發(fā)各層次學生的潛在智能,力求使學生能在原有的基礎上得到發(fā)展。同時通過課堂練習和課后作業(yè),啟發(fā)學生從書本知識回到社會實踐。提供給學生與其生活和周圍世界密切相關的數(shù)學知識,學習基礎性的知識和技能,在教學中積極培養(yǎng)學生學習興趣和動機,明確的學習目的,老師應在課堂上充分調(diào)動學生的學習積極性,激發(fā)來自學生主體的最有力的動力。

  3. 學情分析:(說學法)

  (1)學生特點分析:中學生心理學研究指出,高中階段是(查同中學生心發(fā)展情況)抓住學生特點,積極采用形象生動,形式多樣的教學方法和學生廣泛的積極主動參與的學習方式,定能激發(fā)學生興趣,有效地培養(yǎng)學生能力,促進學生個性發(fā)展。生理上表少年好動,注意力易分散

  (2) 知識障礙上:知識掌握上,學生原有的知識 ,許多學生出現(xiàn)知識遺忘,所以應全面系統(tǒng)的去講述;學生學習本節(jié)課的知識障礙, 知識 學生不易理解,所以教學中老師應予以簡單明白,深入淺出的分析。

  (3)動機和興趣上:明確的學習目的,老師應在課堂上充分調(diào)動學生的學習積極性,激發(fā)來自學生主體的最有力的動力

  最后我來具體談談這一堂課的教學過程:

  4. 教學程序及設想:

  (1)由 引入:把教學內(nèi)容轉(zhuǎn)化為具有潛在意義的問題,讓學生產(chǎn)生強烈的問題意識,使學生的整個學習過程成為“猜想”繼而緊張的沉思,期待錄找理由和證明過程。在實際情況下學習可以使學生利用已有的知識與經(jīng)驗,同化和索引出當肖學習的新知識,這樣獲取知識,不但易于保持,而且易于遷移到陌生的問題情境中。

  (2)由實例得出本課新的知識點

  (3)講解例題。在講例題時,不僅在于怎樣解,更在于為什么這樣解,而及時對解題方法和規(guī)律進行概括,有利于學生的思維能力。

  (4)能力訓練。課后練習使學生能鞏固羨慕自覺運用所學知識與解題思想方法。

  (5)總結(jié)結(jié)論,強化認識。知識性的內(nèi)容小結(jié),可把課堂教學傳授的知識盡快化為學生的素質(zhì),數(shù)學思想方法的小結(jié),可使學生更深刻地理解數(shù)學思想方法在解題中的地位和應用,并且逐步培養(yǎng)學生良好的個性品質(zhì)目標。

  (6)變式延伸,進行重構,重視課本例題,適當對題目進行引申,使例題的作用更加突出,有利于學生對知識的串聯(lián),累積,加工,從而達到舉一反三的效果。

  (7)板書

  (8)布置作業(yè)。

  針對學生素質(zhì)的差異進行分層訓練,既使學生掌握基礎知識,又使學有余力的學生有所提高,

  教學程序:

  (一)課堂結(jié)構:復習提問,導入講授課,課堂練習,鞏固新課,布置作業(yè)等五部分

  高中數(shù)學集合教學反思

  集合這章內(nèi)容,教學參考書上安排的課時為五課時,我們的導學案也是安排五課時,實際教學時,由于對學生的實際情況估計不足,第一課時的導學案用了兩課時才完成。集合這一章的特點是概念不多,但這章所涉及到的內(nèi)容很廣,學生學習本章內(nèi)容時,不僅要理解本章的概念,還要理解與本章內(nèi)容相關聯(lián)的其他內(nèi)容,這些內(nèi)容有初中學習過的內(nèi)容、有生活中的方方面面的相關知識,再加上高中學習方法與初中不同,邏輯思維能力要求較高,因此學生感覺學起來比較困難。針對這種情況,我在實際教學時,首先要求學生準確理解概念,如:集合的元素具有三個性質(zhì):確定性、互異性、無序性。集合的關系、運算等都是從元素的角度定義的,所以解集合問題時,教會學生對元素的性質(zhì)進行分析,反復訓練,讓學生通過實例體會這三個性質(zhì)。

  第二,掌握相關的符號語言、venn圖,正確使用列舉法、描述法表示集合,特別要注意用描述法表示集合時,集合中的元素是什么,這是一個教學難點。第二個難點是集合的運算—交集和并集。突破難點充分運用數(shù)形結(jié)合思想,集合間的關系和運算,以數(shù)形結(jié)合思想為指導,借助圖形思考,可以使各集合間的關系直觀明了,使抽象的集合運算建立在直觀的基礎上,使解題思路清晰明朗,直觀簡捷,有利于問題的解決。

  第三,指導學生理解并掌握自然語言、符號語言、圖形語言這三種語言,靈活準確地進行語言轉(zhuǎn)換,可以幫助學生提高分析問題,解決問題的能力。

  第四,集合問題涉及到的其他內(nèi)容,遇到了講透,不拓展。

高中數(shù)學說課稿 篇4

  一、說教材

  1、 教材的地位和作用

  《集合的概念》是人教版第一章的內(nèi)容(中職數(shù)學)。本節(jié)課的主要內(nèi)容:集合以及集合有關的概念,元素與集合間的關系。初中數(shù)學課本中已現(xiàn)了一些數(shù)和點的集合,如:自然數(shù)的集合、有理數(shù)的集合、不等式解的集合等,但學生并不清楚“集合”在數(shù)學中的含義,集合是一個基礎性的概念,也是也是中職數(shù)學的開篇,是我們后續(xù)學習的重要工具,如:用集合的語言表示函數(shù)的定義域、值域、方程與不等式的解集,曲線上點的集合等。通過本章節(jié)的學習,能讓學生領會到數(shù)學語言的簡潔和準確性,幫助學生學會用集合的語言描述客觀,發(fā)展學生運用數(shù)學語言交流的能力。

  2、 教學目標

  (1)知識目標:a、通過實例了解集合的含義,理解集合以及有關概念;

  b、初步體會元素與集合的“屬于”關系,掌握元素與集合關系的表示方法。

 。2)能力目標:a、讓學生感知數(shù)學知識與實際生活得密切聯(lián)系,培養(yǎng)學生解決實際的能力;

  b、學會借助實例分析,探究數(shù)學問題,發(fā)展學生的觀察歸納能力。

 。3)情感目標:a、通過聯(lián)系生活,提高學生學習數(shù)學的積極性,形成積極的學習態(tài)度;

  b、通過主動探究,合作交流,感受探索的樂趣和成功的體驗,體會數(shù)學的理性和嚴謹。

  3、重點和難點

  重點:集合的概念,元素與集合的關系。

  難點:準確理解集合的概念。

  二、學情分析(說學情)

  對于中職生來說,學生的數(shù)學基礎相對薄弱,他們還沒具備一定的觀察、分析理解、解決實際問題的能力,在運算能力、思維能力等方面參差不齊,學生學好數(shù)學的自信心不強,學習積極性不高,有厭學情緒。

  三、說教法

  針對學生的實際情況,采用探究式教學法進行教學。首先從學生較熟悉的實例出發(fā),提高學生的注意力和激發(fā)學生的學習興趣。在創(chuàng)設情境認知策略上給予適當?shù)狞c撥和引導,引導學生主動思、交流、討論,提出問題。在此基礎上教師層層深入,啟發(fā)學生積極思維,逐步提升學生的數(shù)學學習能力。集合概念的形成遵循由感性到理性,由具體到抽象,便于學生的理解和掌握。

  四、學習指導(說學法)

  教學的矛盾主要方面是學生的學,學是中心,會學是目的,因此在教學中要不斷指導學生學會學習。根據(jù)數(shù)學的特點這節(jié)課主要是教學生動腦思考、多訓練、勤鉆研的研討,這樣做增加了學生主動參與的機會,增強了參與的意識,教學生獲取知識的途徑,思考問題的方法,使學生成為教學的主體,進而才能達到預期的教學目的和效果。

  五、教學過程

  1、引入新課:

  a、創(chuàng)設情境,揭示本課主題,同時對集合的整體性有個初步的感性認識。

  b、介紹集合論的創(chuàng)始者康托爾

  2、究竟什么是集合?(實例探究)切合學生現(xiàn)有的認知水平, 以學生熟悉的事物(物體),以實際生活為背景進行探究, 為本課教學創(chuàng)造出一種自然和諧的氛圍,充分調(diào)動學生的學習熱情接待探究過程學生積極思考、交流、作答,教師針對學生的回答啟發(fā),引導學生尋找實例中的共同特征,培養(yǎng)學生觀察,總結(jié)能力范圍由具體到抽象,由感性到理性,為下面水到渠成的介紹集合概念做好鋪墊。

  3、集合的概念,本課的重點。結(jié)合探究中的實例,讓學生說出集合和元素各是什么?知識的呈現(xiàn)由抽象到具體進一步熟悉元素與集合的概念,讓學生分清實際問題中的集合和元素為后面學習兩者間的關系做好鋪墊。

  教師在這一環(huán)節(jié)做好學習指導,確定的對象組成的整體叫集合,如果對象不確定,就不能確定為集合(舉例)加深對概念的理解。

  4、 熟悉鞏固集合的概念通過例題,練習、幫助學生進一步熟悉和理解集合的概念。

  5、 集合的符號記法,為本節(jié)重點做好鋪墊。

  6、 從實例入行手,探索元素和集合的關系,學生能用文字語言描述,如何用數(shù)學語言描述,給出元素與集合關系符號表示,在這個環(huán)節(jié)教師適當引導學生積極主動參與到知識逐步形成過程,便于學生理解和掌握,落實本課的重點,學習指導:⑴集合元素的確定。⑵理解兩符號的含義。

  7、 思考交流本課的重要環(huán)節(jié)在課堂上給學生提供充分的活動時間和空間。通過自由舉例,能深化概念。同時還能提升學生的分析能力表達自己見解的能力。

  8、 從所舉的例子中抽象出數(shù)集的概念,并給出常見數(shù)集的記法。

  9、 學生練習:通過練習,識記常見數(shù)集的記法,同時進一步鞏固元素與集合間的關系。

  10、知識的實際應用:

  問題不難,落實課本能力目標,培養(yǎng)學生運用數(shù)學的意識和能力初步培養(yǎng)學生應用集合的眼光觀看世界。

  11、課堂小節(jié)

  以學生小節(jié)為主教師幫助為輔,鞏固所學知識,幫助學生認識到要學會梳理所學內(nèi)容,要學會總結(jié)反思,使學生的認識進一步升華,培養(yǎng)學生的鬼納總結(jié)能力。

  六、評價

  教學評價的及時能有效調(diào)動課堂氣氛,感染學生的情緒,對課堂教學發(fā)揮著積極作用,教學過程遵重學生之間的差異培養(yǎng)學生應用集合的眼光看研究對象,注重過程評價與多元評價將教學評價貫穿于本堂課的每個教學環(huán)節(jié)。

  七、教學反思

  1、 通過現(xiàn)實生活中的實例,從特殊到一般,在具體感知基礎上得出集合的描述概念,便于學生理解接受。

  2、 啟發(fā)探究教學,營造學生的學習氛圍,培養(yǎng)學生自主學習,合作交流的能力。

  八、板書設計

高中數(shù)學說課稿 篇5

  各位評委、各位老師:大家好!

  我叫李長杉,來自甘肅省嘉峪關市第一中學。今天我說課的課題是《一元二次不等式的解法》(第一課時)。下面我將圍繞本節(jié)課"教什么?"、"怎樣教?"以及"為什么這樣教?"三個問題,從教材內(nèi)容分析、教法學法分析、教學過程分析和課堂意外預案等幾個方面逐一加以分析和說明。

  一。教材內(nèi)容分析:

  1.本節(jié)課內(nèi)容在整個教材中的地位和作用。

  概括地講,本節(jié)課內(nèi)容的地位體現(xiàn)在它的基礎性,作用體現(xiàn)在它的工具性。一元二次不等式的解法是初中一元一次不等式或一元一次不等式組的延續(xù)和深化,對已學習過的集合知識的鞏固和運用具有重要的作用,也與后面的函數(shù)、數(shù)列、三角函數(shù)、線形規(guī)劃、直線與圓錐曲線以及導數(shù)等內(nèi)容密切相關。許多問題的解決都會借助一元二次不等式的解法。因此,一元二次不等式的解法在整個高中數(shù)學教學中具有很強的基礎性,體現(xiàn)出很大的工具作用。

  2.教學目標定位。

  根據(jù)教學大綱要求、高考考試大綱說明、新課程標準精神、高一學生已有的知識儲備狀況和學生心理認知特征,我確定了四個層面的教學目標。第一層面是面向全體學生的知識目標:熟練掌握一元二次不等式的兩種解法,正確理解一元二次方程、一元二次不等式和二次函數(shù)三者的關系。第二層面是能力目標,培養(yǎng)學生運用數(shù)形結(jié)合與等價轉(zhuǎn)化等數(shù)學思想方法解決問題的能力,提高運算和作圖能力。第三層面是德育目標,通過對解不等式過程中等與不等對立統(tǒng)一關系的認識,向?qū)W生逐步滲透辨證唯物主義思想。第四層面是情感目標,在教師的啟發(fā)引導下,學生自主探究,交流討論,培養(yǎng)學生的合作意識和創(chuàng)新精神。

  3.教學重點、難點確定。

  本節(jié)課是在復習了一次不等式的解法之后,利用二次函數(shù)的圖象研究一元二次不等式的解法。只要學生能夠理解一元二次方程、一元二次不等式和二次函數(shù)三者的關系,并利用其關系解不等式即可。因此,我確定本節(jié)課的教學重點為一元二次不等式的解法,關鍵是一元二次方程、一元二次不等式和二次函數(shù)三者的關系。

  二。教法學法分析:

  數(shù)學是發(fā)展學生思維、培養(yǎng)學生良好意志品質(zhì)和美好情感的重要學科,在教學中,我們不僅要使學生獲得知識、提高解題能力,還要讓學生在教師的啟發(fā)引導下學會學習、樂于學習,感受數(shù)學學科的人文思想,使學生在學習中培養(yǎng)堅強的意志品質(zhì)、形成良好的道德情感。為了更好地體現(xiàn)課堂教學中"教師為主導,學生為主體"的教學關系和"以人為本,以學定教"的教學理念,在本節(jié)課的教學過程中,我將緊緊圍繞教師組織——啟發(fā)引導,學生探究——交流發(fā)現(xiàn),組織開展教學活動。我設計了①創(chuàng)設情景——引入新課,②交流探究——發(fā)現(xiàn)規(guī)律,③啟發(fā)引導——形成結(jié)論,④練習小結(jié)——深化鞏固,⑤思維拓展——提高能力,五個環(huán)環(huán)相扣、層層深入的教學環(huán)節(jié),在教學中注意關注整個過程和全體學生,充分調(diào)動學生積極參與教學過程的每個環(huán)節(jié)。

  三。教學過程分析:

  1.創(chuàng)設情景——引入新課。我們常說"興趣是最好的老師",長期以來,學生對學習數(shù)學缺乏興趣,甚至失去信心,一個重要的原因,是老師在教學中不重視學生對學習的情感體驗,教學應該充分考慮學生的情感和需要,想方設法讓學生在學習中樹立信心,感受學習的樂趣。根據(jù)教材內(nèi)容的安排,我以學生熟悉的畫一次函數(shù)圖象、求一次方程和一次不等式的解為背景知識切入,設置一個練習題組,一方面讓學生總結(jié)復習已有知識,為后面學習二次不等式的解法打下基礎,做好鋪墊,另一方面,使學生在自己熟悉的問題中首先獲得解題成功的快樂體驗,然后以20xx年江蘇省的一道高考試題為引子,引入本節(jié)課的新授內(nèi)容。對于本題,引導學生,利用上面解練習題組1的方法,畫出二次函數(shù)圖象來解答。二次函數(shù)是初中數(shù)學的重要內(nèi)容,本題又給出了函數(shù)圖象上許多點,相信學生畫出圖象應該不成問題,只要教師適當點撥,學生不難得到正確答案。以高考試題為背景引入新課,可以提高學生興趣,抓住學生眼球,吸引學生注意力,還可以讓學生實實在在感受到,高考題就在我們的課本中,就在我們平常的練習中。

  2.探究交流——發(fā)現(xiàn)規(guī)律。從特殊到一般是我們發(fā)現(xiàn)問題、尋求規(guī)律、揭示問題本質(zhì)最常用的方法之一。我把課本例題1、2編為練習題組(一),交由學生用上面解高考題的方法——圖象法去解,學生由于熟知二次函數(shù)圖象,求解應該不會有太大的問題。在這個過程中,教師要啟發(fā)引導學生注意對比兩題的異同,組織引導學生展開交流討論,探討第(2)題能不能先把二次項系數(shù)化正以后再構造函數(shù)畫圖求解。然后達成共識,如果二次項系數(shù)為負數(shù)時,先做等價轉(zhuǎn)化,把二次項系數(shù)化為正數(shù)再解,課本19頁例3、例4作為題組(二),繼續(xù)讓學生用上面的圖象法,由學生自己求解,這時我及時提示學生注意這兩題與題組(一)中兩題的不同(例1、例2對應方程都有兩個不等實根,例3對應方程有兩相等實根,例4對應方程無實根)。兩個題組的練習之后,可以尋求解二次不等式的一般規(guī)律。

  3.啟發(fā)引導——形成結(jié)論。前面兩個題組的四個小題,基本涵蓋了一般一元二次不等式解的各種情況,進一步啟發(fā)引導學生將特殊、具體題目的結(jié)論做一般化總結(jié),與學生一起就 △>0,△<0,△=0 c="">0或ax2+bx+c<0 a="">0)的解的情況應該水到渠成。至此,學生可以感受到,解二次不等式只須①將二次項系數(shù)化為正數(shù),②求解二次方程 ax2+bx+c=0 的根。③根據(jù)①后的二次不等式的符號寫出解集即可,必要時也可以結(jié)合圖象寫解集。這樣我們就得到了二次不等式的另外一種解法(可稱為"三步曲"法)。

  4.訓練小結(jié)——鞏固深化。為了鞏固和加深二次不等式的兩種解法,接下來及時組織學生進行課堂練習,完成課本21頁練習1-4題。本環(huán)節(jié)請不同層次的學生在黑板上書寫解題過程,之后師生共同糾正問題,規(guī)范解題過程的書寫。

  5.延伸拓寬——提高能力。課堂教學既要面向全體學生,又應關注學生的個體差異。體現(xiàn)分類推進,分層教學的原則。為此,我又設計了一個提高練習題組,共有三道備選題目,以供程度較好學有余力的學生能夠更好的展示自己的解題能力,取得更進一步的提高。

  四。課堂意外預案:

  新課程理念下的教學更多的關注學生自主探究、關注學生的個性發(fā)展,鼓勵學生勇于提出問題,培養(yǎng)學生思維的批評性。在課堂上學生往往會提出讓老師感到"意外"的問題,我在平時的教學中重視對"課堂意外預案"的探索和思考,備課時盡量設想課堂中可能會出現(xiàn)的各種情況,做到有備無患,以免在課堂中學生提出讓自己出乎意料的問題,使自己陷入被動尷尬境地。結(jié)合以往經(jīng)驗,在本節(jié)課,我提出兩個"意外預案".

  1.學生在做課本練習1(x+2)(x-3)>0 時,可能會問到轉(zhuǎn)化為不等式組{ 或{ 求解對不對。學生提出的問題,想法非常好,應給予肯定和鼓勵,這與下節(jié)簡單分式不等式和高次不等式的解法有關,是解不等式的另一種解法——等價轉(zhuǎn)化法,不在本節(jié)課之列。

  2.根據(jù)以往的經(jīng)驗,在解(x-1)(x+2)>1一類的不等式的時候,由于受方程(x+1)(x+2)=0 可轉(zhuǎn)化為x-1=0或x+2=0求解的影響,有可能會出現(xiàn)將不等式轉(zhuǎn)化為不等式組{ 來求解的錯誤做法,教師要關注學生,及時發(fā)現(xiàn)問題并給予糾正,指出上面的轉(zhuǎn)化不是等價轉(zhuǎn)化。

  以上是我對本節(jié)課的一些粗淺的認識和構想,如有不妥之處,懇請各位專家、各位同仁批評指正。謝謝大家!

高中數(shù)學說課稿 篇6

  一.說教材

  1.本節(jié)課主要內(nèi)容是線性規(guī)劃的意義以及線性約束條件、線性目標函數(shù)、可行域、可行解、最優(yōu)解等概念,根據(jù)約束條件建立線性目標函數(shù)。應用線性規(guī)劃的圖解法解決一些實際問題。

  2.地位作用:線性規(guī)劃是數(shù)學規(guī)劃中理論較完整、方法較成熟、應用較廣泛的一個分支,它可以解決科學研究、工程設計、經(jīng)濟管理等許多方面的實際問題。簡單的線性規(guī)劃是在學習了直線方程的基礎上,介紹直線方程的一個簡單應用。通過這部分內(nèi)容的學習,使學生進一步了解數(shù)學在解決實際問題中的應用,以培養(yǎng)學生學習數(shù)學的興趣、應用數(shù)學的意識和解決實際問題的能力。

  3.教學目標

  (1)知識與技能:了解線性規(guī)劃的意義以及線性約束條件、線性目標函數(shù)、可行域、可行解、最優(yōu)解等概念,能根據(jù)約束條件建立線性目標函數(shù)。

  了解并初步應用線性規(guī)劃的圖解法解決一些實際問題。

  (2)過程與方法:提高學生數(shù)學地提出、分析和解決問題的能力,發(fā)展學生數(shù)學應用意識,力求對現(xiàn)實世界中蘊含的一些數(shù)學模式進行思考和作出判斷。

  (3)情感、態(tài)度與價值觀:體會數(shù)形結(jié)合、等價轉(zhuǎn)化等數(shù)學思想,逐步認識數(shù)學的應用價值,提高學習數(shù)學的興趣,樹立學好數(shù)學的自信心。

  4.重點與難點

  重點:理解和用好圖解法

  難點:如何用圖解法尋找線性規(guī)劃的最優(yōu)解。

  二.說教學方法

  教學過程是教師和學生共同參與的過程,啟發(fā)學生自主性學習,充分調(diào)動學生的積極性、主動性;有效地滲透數(shù)學思想方法,提高學生素質(zhì)。根據(jù)這樣的原則和所要完成的教學目標,并為激發(fā)學生的學習興趣,我采用如下的教學方法:

  (1)啟發(fā)引導學生思考、分析、實驗、探索、歸納。這能充分調(diào)動學生的主動性和積極性。

  (2)采用“從特殊到一般”、“化抽象為具體”、“化靜為動”的方法。這有利于學生對知識進行主動建構;有利于突出重點、解決難點;也有利于發(fā)揮學生的創(chuàng)造性。

  (3)體現(xiàn)“等價轉(zhuǎn)化”、“數(shù)形結(jié)合”的思想方法。這樣可發(fā)揮學生的主觀能動性,有利于提高學生的各種能力。

  三.說學法指導

  教給學生方法比教給學生知識更重要,本節(jié)課注重調(diào)動學生積極思考、主動探索,盡可能地增加學生參與教學活動的時間和空間,我進行了以下學法指導:觀察分析、聯(lián)想轉(zhuǎn)化、動手實驗、練習鞏固。

  (1)觀察分析:通過引例讓學生觀察化舊知為新知,造成學生認知沖突。

  (2)聯(lián)想轉(zhuǎn)化:學生通過分析、探索、得出解決問題的方法。

  (3)動手實驗:通過作圖、實驗、從而得出一般解題步驟。

  (4)練習鞏固:讓學生知道數(shù)學重在運用,從而檢驗知識的應用情況,找出未掌握的內(nèi)容及其差距。

  四.說教學程序

  1、導入課題: 由一個不等式組表示平面區(qū)域轉(zhuǎn)化為在此平面區(qū)域內(nèi)一二元一次數(shù)的最值問題,造成學生認知沖突。

  3、導學達標之一:創(chuàng)設情境、形成概念

  通過引例的問題讓學生探索解決新問題的方法。

  (設計意圖:利用已經(jīng)學過的知識逐步分析,學以致用,使學生經(jīng)歷數(shù)學知識的形成過程,從而提高學生數(shù)學的地提出、分析和解決問題的能力。)

  然后老師逐步引導,動手實驗,化抽象為直觀。從而得到解決此類問題的方法,并對比引例給出相關概念:線性約束條件、目標函數(shù)、線性目標函數(shù)、線性規(guī)劃、可行解、可行域、最優(yōu)解。并能根據(jù)引例提煉線性規(guī)劃問題的解法——圖解法。

  (設計意圖:引導學生觀察和分析問題,激發(fā)學生的探索欲望,從而培養(yǎng)學生的解決問題和總結(jié)歸納的能力。)

  4.導學達標之二:針對問題、舉例講解、形成技能

  例一:課本61頁例3

  (創(chuàng)設意境:,練習是使學生明白數(shù)學來源于實際又運用于實際,同時使學生進初步應用線性規(guī)劃的圖解法解決一些實際問題。)

  6.鞏固目標:

  練習一:學生做課堂練習P64例4

  (叫學生提出解決問題的方法,并用多媒體展示,并根據(jù)問題的實際意義,考慮取值范圍。造成新的認知沖突,從而研究探索,得到整點最優(yōu)解的一種求法。)

  練習二:為了賺大錢,老張最近承包了一家具廠,可老張卻悶悶不樂,原來家具廠有方木料90m3,五合板600m2,老張準備加工成書桌和書廚出售,他通過調(diào)查了解到:生產(chǎn)每張書桌需要方木料0.1m3、五合板2m2,生產(chǎn)每個書櫥需要方木料0.2m3、五合板1m2,出售一張書桌可獲利潤80元,出售一個書櫥可獲利潤120元。老張卻不知如何安排?(電腦顯示問題)

  (設計意圖:通過實際問題,激發(fā)學生興趣,培養(yǎng)學生的數(shù)學應用意識,力求學生能夠?qū)ΜF(xiàn)實生活中蘊含的一些數(shù)學模式進行思考和作出判斷。)

  7.歸納與小結(jié):

  小結(jié)本課的主要學習內(nèi)容是什么?(由師生共同來完成本課小結(jié))

  (創(chuàng)設意境:讓學生參與小結(jié),引導學生對所學知識進行反思,有利于加強學生記憶和形成良好的數(shù)學思維習慣)

  8.布置作業(yè):

  P64. 2

  五.說板書設計

  板書設計為表格式,這樣的板書簡明清楚,重點突出,加深學生對重點知識的理解和掌握,同時便于記憶,有利于提高教學效果。

【實用的高中數(shù)學說課稿集錦六篇】相關文章:

實用的高中數(shù)學說課稿集錦6篇08-06

實用的高中數(shù)學說課稿集錦五篇08-06

實用的高中數(shù)學說課稿范文集錦9篇08-16

實用的高中數(shù)學說課稿范文集錦7篇08-16

實用的高中數(shù)學說課稿范文集錦六篇08-15

實用的高中數(shù)學說課稿范文集錦5篇08-14

實用的高中數(shù)學說課稿范文集錦八篇08-13

實用的高中數(shù)學說課稿范文集錦九篇08-13

實用的高中數(shù)學說課稿范文集錦10篇08-12