亚洲国产日韩欧美在线a乱码,国产精品路线1路线2路线,亚洲视频一区,精品国产自,www狠狠,国产情侣激情在线视频免费看,亚洲成年网站在线观看

高中數(shù)學(xué)說課稿

時間:2021-06-16 17:37:12 高中說課稿 我要投稿

【精華】高中數(shù)學(xué)說課稿3篇

  在教學(xué)工作者實(shí)際的教學(xué)活動中,通常會被要求編寫說課稿,借助說課稿我們可以快速提升自己的教學(xué)能力。那么應(yīng)當(dāng)如何寫說課稿呢?以下是小編為大家收集的高中數(shù)學(xué)說課稿3篇,希望能夠幫助到大家。

【精華】高中數(shù)學(xué)說課稿3篇

高中數(shù)學(xué)說課稿 篇1

  一、教學(xué)背景分析

  1、教材結(jié)構(gòu)分析

  《圓的方程》安排在高中數(shù)學(xué)第二冊(上)第七章第六節(jié)。圓作為常見的簡單幾何圖形,在實(shí)際生活和生產(chǎn)實(shí)踐中有著廣泛的應(yīng)用。圓的方程屬于解析幾何學(xué)的基礎(chǔ)知識,是研究二次曲線的開始,對后續(xù)直線與圓的位置關(guān)系、圓錐曲線等內(nèi)容的學(xué)習(xí),無論在知識上還是方法上都有著積極的意義,所以本節(jié)內(nèi)容在整個解析幾何中起著承前啟后的作用。

  2、學(xué)情分析

  圓的方程是學(xué)生在初中學(xué)習(xí)了圓的概念和基本性質(zhì)后,又掌握了求曲線方程的一般方法的基礎(chǔ)上進(jìn)行研究的。但由于學(xué)生學(xué)習(xí)解析幾何的時間還不長、學(xué)習(xí)程度較淺,且對坐標(biāo)法的運(yùn)用還不夠熟練,在學(xué)習(xí)過程中難免會出現(xiàn)困難。另外學(xué)生在探究問題的能力,合作交流的意識等方面有待加強(qiáng)。

  根據(jù)上述教材結(jié)構(gòu)與內(nèi)容分析,考慮到學(xué)生已有的認(rèn)知結(jié)構(gòu)和心理特征,我制定如下教學(xué)目標(biāo):

  3、教學(xué)目標(biāo)

  (1) 知識目標(biāo):①掌握圓的標(biāo)準(zhǔn)方程;

 、跁蓤A的標(biāo)準(zhǔn)方程寫出圓的半徑和圓心坐標(biāo),能根據(jù)條件寫出圓的標(biāo)準(zhǔn)方程;

 、劾脠A的標(biāo)準(zhǔn)方程解決簡單的實(shí)際問題。

  (2) 能力目標(biāo):①進(jìn)一步培養(yǎng)學(xué)生用代數(shù)方法研究幾何問題的能力;

 、诩由顚(shù)形結(jié)合思想的理解和加強(qiáng)對待定系數(shù)法的運(yùn)用;

 、墼鰪(qiáng)學(xué)生用數(shù)學(xué)的意識。

  (3) 情感目標(biāo):①培養(yǎng)學(xué)生主動探究知識、合作交流的意識;

  ②在體驗(yàn)數(shù)學(xué)美的過程中激發(fā)學(xué)生的學(xué)習(xí)興趣。

  根據(jù)以上對教材、教學(xué)目標(biāo)及學(xué)情的分析,我確定如下的教學(xué)重點(diǎn)和難點(diǎn):

  4、教學(xué)重點(diǎn)與難點(diǎn)

  (1)重點(diǎn):圓的標(biāo)準(zhǔn)方程的求法及其應(yīng)用。

  (2)難點(diǎn): ①會根據(jù)不同的已知條件求圓的標(biāo)準(zhǔn)方程;

 、谶x擇恰當(dāng)?shù)淖鴺?biāo)系解決與圓有關(guān)的實(shí)際問題。

  為使學(xué)生能達(dá)到本節(jié)設(shè)定的教學(xué)目標(biāo),我再從教法和學(xué)法上進(jìn)行分析:

  二、教法學(xué)法分析

  1、教法分析 為了充分調(diào)動學(xué)生學(xué)習(xí)的積極性,本節(jié)課采用“啟發(fā)式”問題教學(xué)法,用環(huán)環(huán)相扣的問題將探究活動層層深入,使教師總是站在學(xué)生思維的最近發(fā)展區(qū)上。另外我恰當(dāng)?shù)睦枚嗝襟w課件進(jìn)行輔助教學(xué),借助信息技術(shù)創(chuàng)設(shè)實(shí)際問題的情境既能激發(fā)學(xué)生的學(xué)習(xí)興趣,又直觀的引導(dǎo)了學(xué)生建模的過程。

  2、學(xué)法分析 通過推導(dǎo)圓的標(biāo)準(zhǔn)方程,加深對用坐標(biāo)法求軌跡方程的理解。通過求圓的標(biāo)準(zhǔn)方程,理解必須具備三個獨(dú)立的條件才可以確定一個圓。通過應(yīng)用圓的標(biāo)準(zhǔn)方程,熟悉用待定系數(shù)法求的過程。

  下面我就對具體的教學(xué)過程和設(shè)計(jì)加以說明:

  三、教學(xué)過程與設(shè)計(jì)

  整個教學(xué)過程是由七個問題組成的問題鏈驅(qū)動的,共分為五個環(huán)節(jié):

  創(chuàng)設(shè)情境 啟迪思維 深入探究 獲得新知 應(yīng)用舉例 鞏固提高

  反饋訓(xùn)練 形成方法 小結(jié)反思 拓展引申

  下面我從縱橫兩方面敘述我的教學(xué)程序與設(shè)計(jì)意圖。

  首先:縱向敘述教學(xué)過程

  (一)創(chuàng)設(shè)情境——啟迪思維

  問題一 已知隧道的截面是半徑為4m的半圓,車輛只能在道路中心線一側(cè)行駛,一輛寬為2。7m,高為3m的貨車能不能駛?cè)脒@個隧道?

  通過對這個實(shí)際問題的探究,把學(xué)生的思維由用勾股定理求線段CD的長度轉(zhuǎn)移為用曲線的方程來解決。一方面幫助學(xué)生回顧了舊知——求軌跡方程的一般方法,另一方面,在得到汽車不能通過的結(jié)論的同時學(xué)生自己推導(dǎo)出了圓心在原點(diǎn),半徑為4的圓的標(biāo)準(zhǔn)方程,從而很自然的進(jìn)入了本課的主題。用實(shí)際問題創(chuàng)設(shè)問題情境,讓學(xué)生感受到問題來源于實(shí)際,應(yīng)用于實(shí)際,激發(fā)了學(xué)生的學(xué)習(xí)興趣和學(xué)習(xí)欲望。這樣獲取的知識,不但易于保持,而且易于遷移。

  通過對問題一的探究,抓住了學(xué)生的注意力,把學(xué)生的思維引到用坐標(biāo)法研究圓的方程上來,此時再把問題深入,進(jìn)入第二環(huán)節(jié)。

  (二)深入探究——獲得新知

  問題二 1、根據(jù)問題一的探究能不能得到圓心在原點(diǎn),半徑為的圓的方程?

  2、如果圓心在,半徑為時又如何呢?

  這一環(huán)節(jié)我首先讓學(xué)生對問題一進(jìn)行歸納,得到圓心在原點(diǎn),半徑為4的圓的標(biāo)準(zhǔn)方程后,引導(dǎo)學(xué)生歸納出圓心在原點(diǎn),半徑為r的圓的標(biāo)準(zhǔn)方程。然后再讓學(xué)生對圓心不在原點(diǎn)的情況進(jìn)行探究。我預(yù)設(shè)了三種方法等待著學(xué)生的探究結(jié)果,分別是:坐標(biāo)法、圖形變換法、向量平移法。

  得到圓的標(biāo)準(zhǔn)方程后,我設(shè)計(jì)了由淺入深的三個應(yīng)用平臺,進(jìn)入第三環(huán)節(jié)。

  (三)應(yīng)用舉例——鞏固提高

  I、直接應(yīng)用 內(nèi)化新知

  問題三 1、寫出下列各圓的標(biāo)準(zhǔn)方程:

  (1)圓心在原點(diǎn),半徑為3;

  (2)經(jīng)過點(diǎn),圓心在點(diǎn)。

  2、寫出圓的圓心坐標(biāo)和半徑。

  我設(shè)計(jì)了兩個小問題,第一題是直接或間接的給出圓心坐標(biāo)和半徑求圓的標(biāo)準(zhǔn)方程,第二題是給出圓的標(biāo)準(zhǔn)方程求圓心坐標(biāo)和半徑,這兩題比較簡單,可以安排學(xué)生口答完成,目的是先讓學(xué)生熟練掌握圓心坐標(biāo)、半徑與圓的標(biāo)準(zhǔn)方程之間的關(guān)系,為后面探究圓的切線問題作準(zhǔn)備。

  II、靈活應(yīng)用 提升能力

  問題四 1、求以點(diǎn)為圓心,并且和直線相切的圓的方程。

  2、求過點(diǎn),圓心在直線上且與軸相切的圓的方程。

  3、已知圓的方程為,求過圓上一點(diǎn)的切線方程。

  你能歸納出具有一般性的結(jié)論嗎?

  已知圓的方程是,經(jīng)過圓上一點(diǎn)的切線的方程是什么?

  我設(shè)計(jì)了三個小問題,第一個小題有了剛剛解決問題三的基礎(chǔ),學(xué)生會很快求出半徑,根據(jù)圓心坐標(biāo)寫出圓的標(biāo)準(zhǔn)方程。第二個小題有些困難,需要引導(dǎo)學(xué)生應(yīng)用待定系數(shù)法確定圓心坐標(biāo)和半徑再求解,從而理解必須具備三個獨(dú)立的條件才可以確定一個圓。第三個小題解決方法較多,我預(yù)設(shè)了四種方法再一次為學(xué)生的發(fā)散思維創(chuàng)設(shè)了空間。最后我讓學(xué)生由第三小題的結(jié)論進(jìn)行歸納、猜想,在論證經(jīng)過圓上一點(diǎn)圓的切線方程的過程中,又一次模擬了真理發(fā)現(xiàn)的過程,使探究氣氛達(dá)到高潮。

  III、實(shí)際應(yīng)用 回歸自然

  問題五 如圖是某圓拱橋的一孔圓拱的示意圖,該圓拱跨度AB=20m,拱高OP=4m,在建造時每隔4m需用一個支柱支撐,求支柱的長度(精確到0。01m)。

  我選用了教材的例3,它是待定系數(shù)法求出圓的三個參數(shù)的又一次應(yīng)用,同時也與引例相呼應(yīng),使學(xué)生形成解決實(shí)際問題的一般方法,培養(yǎng)了學(xué)生建模的習(xí)慣和用數(shù)學(xué)的意識。

  (四)反饋訓(xùn)練——形成方法

  問題六 1、求過原點(diǎn)和點(diǎn),且圓心在直線上的圓的標(biāo)準(zhǔn)方程。

  2、求圓過點(diǎn)的切線方程。

  3、求圓過點(diǎn)的切線方程。

  接下來是第四環(huán)節(jié)——反饋訓(xùn)練。這一環(huán)節(jié)中,我設(shè)計(jì)三個小題作為鞏固性訓(xùn)練,給學(xué)生一塊“用武”之地,讓每一位同學(xué)體驗(yàn)學(xué)習(xí)數(shù)學(xué)的樂趣,成功的喜悅,找到自信,增強(qiáng)學(xué)習(xí)數(shù)學(xué)的愿望與信心。另外第3題是我特意安排的一道求過圓外一點(diǎn)的圓的切線方程,由于學(xué)生剛剛歸納了過圓上一點(diǎn)圓的切線方程,因此很容易產(chǎn)生思維的負(fù)遷移,另外這道題目有兩解,學(xué)生容易漏掉斜率不存在的情況,這時引導(dǎo)學(xué)生用數(shù)形結(jié)合的思想,結(jié)合初中已有的圓的知識進(jìn)行判斷,這樣的設(shè)計(jì)對培養(yǎng)學(xué)生思維的嚴(yán)謹(jǐn)性具有良好的效果。

  (五)小結(jié)反思——拓展引申

  1、課堂小結(jié)

  把圓的標(biāo)準(zhǔn)方程與過圓上一點(diǎn)圓的切線方程加以小結(jié),提煉數(shù)形結(jié)合的思想和待定系數(shù)的方法

 、賵A心為,半徑為r 的圓的標(biāo)準(zhǔn)方程為:

  圓心在原點(diǎn)時,半徑為r 的圓的標(biāo)準(zhǔn)方程為:。

 、谝阎獔A的方程是,經(jīng)過圓上一點(diǎn)的切線的方程是:。

  2、分層作業(yè)

  (A)鞏固型作業(yè):教材P81-82:(習(xí)題7。6)1,2,4。(B)思維拓展型作業(yè):試推導(dǎo)過圓上一點(diǎn)的切線方程。

  3、激發(fā)新疑

  問題七 1、把圓的標(biāo)準(zhǔn)方程展開后是什么形式?

  2、方程表示什么圖形?

  在本課的結(jié)尾設(shè)計(jì)這兩個問題,作為對這節(jié)課內(nèi)容的鞏固與延伸,讓學(xué)生體會知識的起點(diǎn)與終點(diǎn)都蘊(yùn)涵著問題,舊的問題解決了,新的問題又產(chǎn)生了。在知識的拓展中再次掀起學(xué)生探究的熱情。另外它為下節(jié)課研究圓的一般方程作了重要的準(zhǔn)備。

  以上是我縱向的教學(xué)過程及簡單的設(shè)計(jì)意圖,接下來,我從三個方面橫向的進(jìn)一步闡述我的教學(xué)設(shè)計(jì):

  橫向闡述教學(xué)設(shè)計(jì)

  (一)突出重點(diǎn) 抓住關(guān)鍵 突破難點(diǎn)

  求圓的標(biāo)準(zhǔn)方程既是本節(jié)課的教學(xué)重點(diǎn)也是難點(diǎn),為此我布設(shè)了由淺入深的學(xué)習(xí)環(huán)境,先讓學(xué)生熟悉圓心、半徑與圓的標(biāo)準(zhǔn)方程之間的關(guān)系,逐步理解三個參數(shù)的重要性,自然形成待定系數(shù)法的解題思路,在突出重點(diǎn)的同時突破了難點(diǎn)。

  第二個教學(xué)難點(diǎn)就是解決實(shí)際應(yīng)用問題,這是學(xué)生固有的難題,主要是因?yàn)閼?yīng)用問題的題目冗長,學(xué)生很難根據(jù)問題情境構(gòu)建數(shù)學(xué)模型,缺乏解決實(shí)際問題的信心,為此我首先用一道題目簡潔、貼近生活的實(shí)例進(jìn)行引入,激發(fā)學(xué)生的求知欲,同時我借助多媒體課件的演示,引導(dǎo)學(xué)生真正走入問題的情境之中,并從中抽象出數(shù)學(xué)模型,從而消除畏難情緒,增強(qiáng)了信心。最后再形成應(yīng)用圓的標(biāo)準(zhǔn)方程解決實(shí)際問題的一般模式,并嘗試應(yīng)用該模式分析和解決第二個應(yīng)用問題——問題五。這樣的設(shè)計(jì),使學(xué)生在解決問題的同時,形成了方法,難點(diǎn)自然突破。

  (二)學(xué)生主體 教師主導(dǎo) 探究主線

  本節(jié)課的設(shè)計(jì)用問題做鏈,環(huán)環(huán)相扣,使學(xué)生的探究活動貫穿始終。從圓的標(biāo)準(zhǔn)方程的.推導(dǎo)到應(yīng)用都是在問題的指引、我的指導(dǎo)下,由學(xué)生探究完成的。另外,我重點(diǎn)設(shè)計(jì)了兩次思維發(fā)散點(diǎn),分別是問題二和問題四的第三問,要求學(xué)生分組討論,合作交流,為學(xué)生設(shè)立充分的探究空間,學(xué)生在交流成果的過程中,既體驗(yàn)了科學(xué)研究和真理發(fā)現(xiàn)的復(fù)雜與艱辛,又在我的適度引導(dǎo)、側(cè)面幫助、不斷肯定下順利完成了探究活動并走向成功,在一個個問題的驅(qū)動下,高效的完成本節(jié)的學(xué)習(xí)任務(wù)。

  (三)培養(yǎng)思維 提升能力 激勵創(chuàng)新

  為了培養(yǎng)學(xué)生的理性思維,我分別在問題一和問題四中,設(shè)計(jì)了兩次由特殊到一般的學(xué)習(xí)思路,培養(yǎng)學(xué)生的歸納概括能力。在問題的設(shè)計(jì)中,我利用一題多解的探究,縱向挖掘知識深度,橫向加強(qiáng)知識間的聯(lián)系,培養(yǎng)了學(xué)生的創(chuàng)新精神,并且使學(xué)生的有效思維量加大,隨時對所學(xué)知識和方法產(chǎn)生有意注意,使能力與知識的形成相伴而行。

  以上是我對這節(jié)課的教學(xué)預(yù)設(shè),具體的教學(xué)過程還要根據(jù)學(xué)生在課堂中的具體情況適當(dāng)調(diào)整,向生成性課堂進(jìn)行轉(zhuǎn)變。最后我以赫爾巴特的一句名言結(jié)束我的說課,發(fā)揮我們的創(chuàng)造性,力爭“使教育過程成為一種藝術(shù)的事業(yè)”。

高中數(shù)學(xué)說課稿 篇2

  一、教材分析

  本節(jié)是人教A版高中數(shù)學(xué)必修三第二章《統(tǒng)計(jì)》中的第三節(jié) “變量間的相關(guān)關(guān)系” 的第二課時。在上一課時,學(xué)生已經(jīng)懂得根據(jù)兩個相關(guān)變量的數(shù)據(jù)作出散點(diǎn)圖,并利用散點(diǎn)圖直觀認(rèn)識變量間的相關(guān)關(guān)系。這節(jié)課是在上一節(jié)課的基礎(chǔ)上介紹了用線性回歸的方法研究兩個變量的相關(guān)性和最小二乘法的思想。

  從全章的內(nèi)容上看,線性回歸方程的建立不僅是本節(jié)的難點(diǎn),也是本章內(nèi)容的難點(diǎn)之一。線性回歸是最簡單的回歸分析,學(xué)好回歸分析是學(xué)好統(tǒng)計(jì)學(xué)的重要基礎(chǔ)。

  二、教學(xué)目標(biāo)

  根據(jù)課標(biāo)的要求及前面的分析,結(jié)合高二學(xué)生的認(rèn)知特點(diǎn)確定本節(jié)課的教學(xué)目標(biāo)如下:

  知識與技能:

  1. 知道最小二乘法和回歸分析的思想;

  2. 能根據(jù)線性回歸方程系數(shù)公式求出回歸方程

  過程與方法:

  經(jīng)歷線性回歸分析過程,借助圖形計(jì)算器得出回歸直線,增強(qiáng)數(shù)學(xué)應(yīng)用和使用技術(shù)的意識。

  情感態(tài)度與價值觀

  通過合作學(xué)習(xí),養(yǎng)成傾聽別人意見和建議的良好品質(zhì)

  三、重點(diǎn)難點(diǎn)分析:

  根據(jù)目標(biāo)分析,確定教學(xué)重點(diǎn)和難點(diǎn)如下:

  教學(xué)重點(diǎn):

  1. 知道最小二乘法和回歸分析的思想;

  2.會求回歸直線

  教學(xué)難點(diǎn):

  建立回歸思想,會求回歸直線

  四、教學(xué)設(shè)計(jì)

  提出問題

  理論探究

  驗(yàn)證結(jié)論

  小結(jié)提升

  應(yīng)用實(shí)踐

  作業(yè)設(shè)計(jì)

  教學(xué)環(huán)節(jié)

  內(nèi)容及說明

  創(chuàng)設(shè)情境

  探究:在一次對人體脂肪含量和年齡關(guān)系的研究中,研究人員獲得了一組樣本數(shù)據(jù):

  問題與引導(dǎo)設(shè)計(jì)

  師生活動

  設(shè)計(jì)意圖

  問題1. 利用圖形計(jì)算器作出散點(diǎn)圖,并指出上面的兩個變量是正相關(guān)還是負(fù)相關(guān)?

  教師提問,學(xué)生

  通過動手操作得

  出散點(diǎn)圖并回答

  以舊“探”新:對舊的知識進(jìn)行簡要的提問復(fù)習(xí),為本節(jié)課學(xué)生能夠更好的建構(gòu)新的知識做好充分的準(zhǔn)備;尤其為一些后進(jìn)生能夠順利的完成本節(jié)課的內(nèi)容提供必要的基礎(chǔ)。

  教師引導(dǎo):通過上節(jié)課的學(xué)習(xí),我們知道散點(diǎn)圖是研究兩個變量相關(guān)關(guān)系的一種重要手段。下面,請同學(xué)們根據(jù)得出的散點(diǎn)圖,思考下面的問題2.

  問題2. 甲同學(xué)判斷某人年齡在65歲時體內(nèi)脂肪含量百分比可能為34,乙同學(xué)判斷可能為25,而丙同學(xué)則判斷可能為37,你對甲,

  乙,丙三個同學(xué)的判斷有什么看法?

  學(xué)生能夠表達(dá)自己的看法。有的學(xué)生可能會認(rèn)為乙同學(xué)的判斷是錯誤的;有的學(xué)生可能認(rèn)為甲乙丙三個同學(xué)的判斷都是對的,答案不唯一

  該問題具有探究性、啟發(fā)性和開放性。鼓勵學(xué)生大膽表達(dá)自己的看法。通過設(shè)計(jì)該問題,引導(dǎo)學(xué)生自己發(fā)現(xiàn)問題,注意到散點(diǎn)圖中點(diǎn)的分布具有一定規(guī)律,體會觀測點(diǎn)與回歸直線的關(guān)系;進(jìn)而引起學(xué)生的對本節(jié)課內(nèi)容的興趣。

  問題3. 反思問題,你還可以提出哪些問題嗎?小組討論,看哪個小組提出的問題多

  在小組討論的形式下和比較哪個小組提出的問題多,學(xué)生之間會充分的進(jìn)行交流,提出問題

  通過小組討論比較,調(diào)動學(xué)生的學(xué)習(xí)積極性和興趣,活躍課堂氣氛,達(dá)到學(xué)生自己提出問題的效果,培養(yǎng)學(xué)生的學(xué)生創(chuàng)新思維和問題意識。

  學(xué)生可能提出的問題:

 、贋槭裁醇住⒈瑢W(xué)的判斷結(jié)果正確的可能性較大,而乙同學(xué)判斷結(jié)果正確的可能性較小?

 、谀橙四挲g在65歲時體內(nèi)脂肪含量百分比最可能是多少?在其它年齡時呢?

 、圻@些樣本數(shù)據(jù)揭示出兩個相關(guān)變量之間怎樣的關(guān)系呢?

 、茉鯓佑脭(shù)學(xué)的方法研究變量之間的相關(guān)關(guān)系呢?每個問題都是學(xué)生“火熱的思考”成果

高中數(shù)學(xué)說課稿 篇3

  各位老師:

  大家好!我叫***,來自**。我說課的題目是《概率的基本性質(zhì)》,內(nèi)容選自于高中教材新課程人教A版必修3第三章第一節(jié),課時安排為三個課時,本節(jié)課內(nèi)容為第三課時。下面我將從教材分析、教學(xué)目標(biāo)分析、教法分析、教學(xué)過程分析四大方面來闡述我對這節(jié)課的分析和設(shè)計(jì):

  一、教材分析

  1、教材所處的地位和作用

  本節(jié)課主要包含了兩部分內(nèi)容:一是事件的關(guān)系與運(yùn)算,二是概率的基本性質(zhì),多以基本概念和性質(zhì)為主。它是本冊第二章統(tǒng)計(jì)的延伸,又是后面"古典概型"及"幾何概型"的基礎(chǔ)。在整個教學(xué)中起到承上啟下的作用。同時也是新課改以來考查的熱點(diǎn)之一。

  2、教學(xué)的重點(diǎn)和難點(diǎn)

  重點(diǎn):概率的加法公式及其應(yīng)用;事件的關(guān)系與運(yùn)算。

  難點(diǎn):互斥事件與對立事件的區(qū)別與聯(lián)系

  二、教學(xué)目標(biāo)分析

  1.知識與技能目標(biāo)

  ⑴了解隨機(jī)事件間的基本關(guān)系與運(yùn)算;

 、普莆崭怕实膸讉基本性質(zhì),并會用其解決簡單的概率問題。

  2、過程與方法:

 、磐ㄟ^觀察、類比、歸納培養(yǎng)學(xué)生運(yùn)用數(shù)學(xué)知識的綜合能力;

 、仆ㄟ^學(xué)生自主探究,合作探究培養(yǎng)學(xué)生的動手探索的能力。

  3、情感態(tài)度與價值觀:

  通過數(shù)學(xué)活動,了解教學(xué)與實(shí)際生活的密切聯(lián)系,感受數(shù)學(xué)知識應(yīng)用于現(xiàn)實(shí)世界的具體情境,從而激發(fā)學(xué)習(xí)數(shù)學(xué)的情趣。

  三、教法分析

  采用實(shí)驗(yàn)觀察、質(zhì)疑啟發(fā)、類比聯(lián)想、探究歸納的教學(xué)方法。

  四、教學(xué)過程分析

  1、創(chuàng)設(shè)情境,引入新課

  在擲骰子的試驗(yàn)中,我們可以定義許多事件,如:

  c1=﹛出現(xiàn)的點(diǎn)數(shù)=1﹜,c2=﹛出現(xiàn)的點(diǎn)數(shù)=2﹜

  c3=﹛出現(xiàn)的點(diǎn)數(shù)=3﹜,c4=﹛出現(xiàn)的點(diǎn)數(shù)=4﹜

  c5=﹛出現(xiàn)的點(diǎn)數(shù)=5﹜,c6=﹛出現(xiàn)的點(diǎn)數(shù)=6﹜

  D1=﹛出現(xiàn)的點(diǎn)數(shù)不大于1﹜D2=﹛出現(xiàn)的點(diǎn)數(shù)大于3﹜

  D3=﹛出現(xiàn)的點(diǎn)數(shù)小于5﹜,E=﹛出現(xiàn)的點(diǎn)數(shù)小于7﹜

  f=﹛出現(xiàn)的點(diǎn)數(shù)大于6﹜,G=﹛出現(xiàn)的點(diǎn)數(shù)為偶數(shù)﹜

  H=﹛出現(xiàn)的點(diǎn)數(shù)為奇數(shù)﹜

 、乓砸肜械氖录㧟1和事件H,事件c1和事件D1為例講授事件之的包含關(guān)系和相等關(guān)系。

  ⑵從以上兩個關(guān)系學(xué)生不難發(fā)現(xiàn)事件間的關(guān)系與集合間的關(guān)系相類似。進(jìn)而引導(dǎo)學(xué)生思考,是否可以把事件和集合對應(yīng)起來。

  「設(shè)計(jì)意圖」引出我們接下來要學(xué)習(xí)的主要內(nèi)容:事件之間的關(guān)系與運(yùn)算

  2、探究新知

 、迨录年P(guān)系與運(yùn)算

 、沤(jīng)過上面的思考,我們得出:

  試驗(yàn)的可能結(jié)果的全體←→全集

  ↓↓

  每一個事件←→子集

  這樣我們就把事件和集合對應(yīng)起來了,用已有的集合間關(guān)系來分析事件間的關(guān)系。

  集合的并→兩事件的并事件(和事件)

  集合的交→兩事件的交事件(積事件)

  在此過程中要注意幫助學(xué)生區(qū)分集合關(guān)系與事件關(guān)系之間的不同。

 。ɡ纾簝杉螦∪B,表示此集合中的任意元素或者屬于集合A或者屬于集合B;而兩事件A和B的并事件A∪B發(fā)生,表示或者事件A發(fā)生,或者事件B發(fā)生。)

  「設(shè)計(jì)意圖」為更好地理解互斥事件和對立事件打下基礎(chǔ),

 、扑伎迹孩偃糁粩S一次骰子,則事件c1和事件c2有可能同時發(fā)生么?

  ②在擲骰子實(shí)驗(yàn)中事件G和事件H是否一定有一個會發(fā)生?

  「設(shè)計(jì)意圖」這兩道思考題都很容易得到答案,主要目的是為引出接下來將要學(xué)習(xí)的互斥事件和對立事件,讓學(xué)生從實(shí)際案例中體驗(yàn)它們各自的特征以及它們之間的區(qū)別與聯(lián)系。

 、强偨Y(jié)出互斥事件和對立事件的概念,并通過多媒體的圖形演示使學(xué)生們能更好地理解它們的特征以及它們之間的區(qū)別與聯(lián)系。

 、染毩(xí):通過多媒體顯示兩道練習(xí),目的是讓學(xué)生們能夠及時鞏固對互斥事件和對立事件的學(xué)習(xí),加深理解。

  ㈡概率的基本性質(zhì):

 、呕仡櫍侯l率=頻數(shù)/試驗(yàn)的次數(shù)

  我們知道當(dāng)試驗(yàn)次數(shù)足夠大時,用頻率來估計(jì)概率,由于頻率在0~1之間,所以,可以得到概率的基本性質(zhì)、

 。ㄍㄟ^對頻率的理解并結(jié)合前面投硬幣的實(shí)驗(yàn)來總結(jié)出概率的基本性質(zhì),師生共同交流得出結(jié)果)

  3、典型例題探究

  例1一個射手進(jìn)行一次射擊,試判斷下列事件哪些是互斥事件?哪些是對立事件?

  事件A:命中環(huán)數(shù)大于7環(huán);事件B:命中環(huán)數(shù)為10環(huán);

  事件c:命中環(huán)數(shù)小于6環(huán);事件D:命中環(huán)數(shù)為6、7、8、9、10環(huán)、

  分析:要判斷所給事件是對立還是互斥,首先將兩個概念的聯(lián)系與區(qū)別弄清楚

  例2如果從不包括大小王的52張撲克牌中隨機(jī)抽取一張,那么取到紅心(事件A)的概率是1/4,取到方塊(事件B)的概率是1/4,問:

 。1)取到紅色牌(事件c)的概率是多少?

 。2)取到黑色牌(事件D)的概率是多少?

  分析:事件c是事件A與事件B的并,且A與B互斥,因此可用互斥事件的概率和公式求解;事件c與事件D是對立事件,因此P(D)=1—P(c).

  「設(shè)計(jì)意圖」通過這兩道例題,進(jìn)一步鞏固學(xué)生對本節(jié)課知識的掌握,并將所學(xué)知識應(yīng)用到實(shí)際解決問題中去。

  4、課堂小結(jié)

 、爬斫馐录年P(guān)系和運(yùn)算

 、普莆崭怕实幕拘再|(zhì)

  「設(shè)計(jì)意圖」小結(jié)是引導(dǎo)學(xué)生對問題進(jìn)行回味與深化,使知識成為系統(tǒng)。讓學(xué)生嘗試小結(jié),提高學(xué)生的總結(jié)能力和語言表達(dá)能力。教師補(bǔ)充幫助學(xué)生全面地理解,掌握新知識。

  5、布置作業(yè)

  習(xí)題3、1A1、3、4

  「設(shè)計(jì)意圖」課后作業(yè)的布置是為了檢驗(yàn)學(xué)生對本節(jié)課內(nèi)容的理解和運(yùn)用程度,并促使學(xué)生進(jìn)一步鞏固和掌握所學(xué)內(nèi)容。

  五、板書設(shè)計(jì)

  概率的基本性質(zhì)

  一、事件間的關(guān)系和運(yùn)算

  二、概率的基本性質(zhì)

  三、例1的板書區(qū)

  例2的板書區(qū)

  四、規(guī)律性質(zhì)總結(jié)

【【精華】高中數(shù)學(xué)說課稿3篇】相關(guān)文章:

【精華】高中數(shù)學(xué)說課稿4篇06-15

高中數(shù)學(xué)經(jīng)典說課稿范文06-24

高中數(shù)學(xué)說課稿(15篇)11-03

高中數(shù)學(xué)說課稿15篇10-16

高中數(shù)學(xué)經(jīng)典優(yōu)秀說課稿模板07-14

高中數(shù)學(xué)說課稿10篇06-13

高中數(shù)學(xué)說課稿三篇06-09

高中數(shù)學(xué)《什么是概率》說課稿范文01-27

高中數(shù)學(xué)說課稿《正弦定理》范文01-23