《一元二次不等式的解法(第一課時(shí))》說(shuō)課稿
說(shuō)課既可以是針對(duì)具體課題的,也可以是針對(duì)一個(gè)觀點(diǎn)或一個(gè)問(wèn)題的。所以我們認(rèn)為,說(shuō)課就是教師針對(duì)某一觀點(diǎn)、問(wèn)題或具體課題,口頭表述其教學(xué)設(shè)想及其理論依據(jù)。下面是關(guān)于《一元二次不等式的解法》說(shuō)課稿,歡迎借鑒!
《一元二次不等式的解法(第一課時(shí))》說(shuō)課稿
一、教材內(nèi)容分析:
1.本節(jié)課內(nèi)容在整個(gè)教材中的地位和作用。
概括地講,本節(jié)課內(nèi)容的地位體現(xiàn)在它的基礎(chǔ)性,作用體現(xiàn)在它的工具性。一元二次不等式的解法是初中一元一次不等式或一元一次不等式組的延續(xù)和深化,對(duì)已學(xué)習(xí)過(guò)的集合知識(shí)的鞏固和運(yùn)用具有重要的作用,也與后面的函數(shù)、數(shù)列、三角函數(shù)、線形規(guī)劃、直線與圓錐曲線以及導(dǎo)數(shù)等內(nèi)容密切相關(guān)。許多問(wèn)題的解決都會(huì)借助一元二次不等式的解法。因此,一元二次不等式的解法在整個(gè)高中數(shù)學(xué)教學(xué)中具有很強(qiáng)的基礎(chǔ)性,體現(xiàn)出很大的工具作用。
2.教學(xué)目標(biāo)定位。
根據(jù)教學(xué)大綱要求、高考考試大綱說(shuō)明、新課程標(biāo)準(zhǔn)精神、高一學(xué)生已有的知識(shí)儲(chǔ)備狀況和學(xué)生心理認(rèn)知特征,我確定了四個(gè)層面的教學(xué)目標(biāo)。第一層面是面向全體學(xué)生的知識(shí)目標(biāo):熟練掌握一元二次不等式的兩種解法,正確理解一元二次方程、一元二次不等式和二次函數(shù)三者的關(guān)系。第二層面是能力目標(biāo),培養(yǎng)學(xué)生運(yùn)用數(shù)形結(jié)合與等價(jià)轉(zhuǎn)化等數(shù)學(xué)思想方法解決問(wèn)題的能力,提高運(yùn)算和作圖能力。第三層面是德育目標(biāo),通過(guò)對(duì)解不等式過(guò)程中等與不等對(duì)立統(tǒng)一關(guān)系的認(rèn)識(shí),向?qū)W生逐步滲透辨證唯物主義思想。第四層面是情感目標(biāo),在教師的啟發(fā)引導(dǎo)下,學(xué)生自主探究,交流討論,培養(yǎng)學(xué)生的合作意識(shí)和創(chuàng)新精神。
3.教學(xué)重點(diǎn)、難點(diǎn)確定。
本節(jié)課是在復(fù)習(xí)了一次不等式的解法之后,利用二次函數(shù)的圖象研究一元二次不等式的解法。只要學(xué)生能夠理解一元二次方程、一元二次不等式和二次函數(shù)三者的關(guān)系,并利用其關(guān)系解不等式即可。因此,我確定本節(jié)課的教學(xué)重點(diǎn)為一元二次不等式的解法,關(guān)鍵是一元二次方程、一元二次不等式和二次函數(shù)三者的關(guān)系。
二、教法學(xué)法分析:
數(shù)學(xué)是發(fā)展學(xué)生思維、培養(yǎng)學(xué)生良好意志品質(zhì)和美好情感的重要學(xué)科,在教學(xué)中,我們不僅要使學(xué)生獲得知識(shí)、提高解題能力,還要讓學(xué)生在教師的啟發(fā)引導(dǎo)下學(xué)會(huì)學(xué)習(xí)、樂(lè)于學(xué)習(xí),感受數(shù)學(xué)學(xué)科的人文思想,使學(xué)生在學(xué)習(xí)中培養(yǎng)堅(jiān)強(qiáng)的意志品質(zhì)、形成良好的道德情感。為了更好地體現(xiàn)課堂教學(xué)中“教師為主導(dǎo),學(xué)生為主體”的教學(xué)關(guān)系和“以人為本,以學(xué)定教”的教學(xué)理念,在本節(jié)課的教學(xué)過(guò)程中,我將緊緊圍繞教師組織——啟發(fā)引導(dǎo),學(xué)生探究——交流發(fā)現(xiàn),組織開(kāi)展教學(xué)活動(dòng)。我設(shè)計(jì)了①創(chuàng)設(shè)情景——引入新課,②交流探究——發(fā)現(xiàn)規(guī)律,③啟發(fā)引導(dǎo)——形成結(jié)論,④練習(xí)小結(jié)——深化鞏固,⑤思維拓展——提高能力,五個(gè)環(huán)環(huán)相扣、層層深入的教學(xué)環(huán)節(jié),在教學(xué)中注意關(guān)注整個(gè)過(guò)程和全體學(xué)生,充分調(diào)動(dòng)學(xué)生積極參與教學(xué)過(guò)程的每個(gè)環(huán)節(jié)。
三、教學(xué)過(guò)程分析:
1.創(chuàng)設(shè)情景——引入新課。我們常說(shuō)“興趣是最好的老師”,長(zhǎng)期以來(lái),學(xué)生對(duì)學(xué)習(xí)數(shù)學(xué)缺乏興趣,甚至失去信心,一個(gè)重要的原因,是老師在教學(xué)中不重視學(xué)生對(duì)學(xué)習(xí)的情感體驗(yàn),教學(xué)應(yīng)該充分考慮學(xué)生的情感和需要,想方設(shè)法讓學(xué)生在學(xué)習(xí)中樹(shù)立信心,感受學(xué)習(xí)的`樂(lè)趣。根據(jù)教材內(nèi)容的安排,我以學(xué)生熟悉的畫(huà)一次函數(shù)圖象、求一次方程和一次不等式的解為背景知識(shí)切入,設(shè)置一個(gè)練習(xí)題組,一方面讓學(xué)生總結(jié)復(fù)習(xí)已有知識(shí),為后面學(xué)習(xí)二次不等式的解法打下基礎(chǔ),做好鋪墊,另一方面,使學(xué)生在自己熟悉的問(wèn)題中首先獲得解題成功的快樂(lè)體驗(yàn),然后以2004年江蘇省的一道高考試題為引子,引入本節(jié)課的新授內(nèi)容。對(duì)于本題,引導(dǎo)學(xué)生,利用上面解練習(xí)題組1的方法,畫(huà)出二次函數(shù)圖象來(lái)解答。二次函數(shù)是初中數(shù)學(xué)的重要內(nèi)容,本題又給出了函數(shù)圖象上許多點(diǎn),相信學(xué)生畫(huà)出圖象應(yīng)該不成問(wèn)題,只要教師適當(dāng)點(diǎn)撥,學(xué)生不難得到正確答案。以高考試題為背景引入新課,可以提高學(xué)生興趣,抓住學(xué)生眼球,吸引學(xué)生注意力,還可以讓學(xué)生實(shí)實(shí)在在感受到,高考題就在我們的課本中,就在我們平常的練習(xí)中。
2.探究交流——發(fā)現(xiàn)規(guī)律。從特殊到一般是我們發(fā)現(xiàn)問(wèn)題、尋求規(guī)律、揭示問(wèn)題本質(zhì)最常用的方法之一。我把課本例題1、2編為練習(xí)題組(一),交由學(xué)生用上面解高考題的方法——圖象法去解,學(xué)生由于熟知二次函數(shù)圖象,求解應(yīng)該不會(huì)有太大的問(wèn)題。在這個(gè)過(guò)程中,教師要啟發(fā)引導(dǎo)學(xué)生注意對(duì)比兩題的異同,組織引導(dǎo)學(xué)生展開(kāi)交流討論,探討第(2)題能不能先把二次項(xiàng)系數(shù)化正以后再構(gòu)造函數(shù)畫(huà)圖求解。然后達(dá)成共識(shí),如果二次項(xiàng)系數(shù)為負(fù)數(shù)時(shí),先做等價(jià)轉(zhuǎn)化,把二次項(xiàng)系數(shù)化為正數(shù)再解,課本19頁(yè)例3、例4作為題組(二),繼續(xù)讓學(xué)生用上面的圖象法,由學(xué)生自己求解,這時(shí)我及時(shí)提示學(xué)生注意這兩題與題組(一)中兩題的不同(例1、例2對(duì)應(yīng)方程都有兩個(gè)不等實(shí)根,例3對(duì)應(yīng)方程有兩相等實(shí)根,例4對(duì)應(yīng)方程無(wú)實(shí)根)。兩個(gè)題組的練習(xí)之后,可以尋求解二次不等式的一般規(guī)律。
3.啟發(fā)引導(dǎo)——形成結(jié)論。前面兩個(gè)題組的四個(gè)小題,基本涵蓋了一般一元二次不等式解的各種情況,進(jìn)一步啟發(fā)引導(dǎo)學(xué)生將特殊、具體題目的結(jié)論做一般化總結(jié),與學(xué)生一起就 △>0,△<0,△=0 的三種情況,總結(jié)二次不等式ax2+bx+c>0或ax2+bx+c<0 (a>0)的解的情況應(yīng)該水到渠成。至此,學(xué)生可以感受到,解二次不等式只須①將二次項(xiàng)系數(shù)化為正數(shù),②求解二次方程 ax2+bx+c=0 的根。③根據(jù)①后的二次不等式的符號(hào)寫(xiě)出解集即可,必要時(shí)也可以結(jié)合圖象寫(xiě)解集。這樣我們就得到了二次不等式的另外一種解法(可稱為“三步曲”法)。
4.訓(xùn)練小結(jié)——鞏固深化。為了鞏固和加深二次不等式的兩種解法,接下來(lái)及時(shí)組織學(xué)生進(jìn)行課堂練習(xí),完成課本21頁(yè)練習(xí)1-4題。本環(huán)節(jié)請(qǐng)不同層次的學(xué)生在黑板上書(shū)寫(xiě)解題過(guò)程,之后師生共同糾正問(wèn)題,規(guī)范解題過(guò)程的書(shū)寫(xiě)。
5.延伸拓寬——提高能力。課堂教學(xué)既要面向全體學(xué)生,又應(yīng)關(guān)注學(xué)生的個(gè)體差異。體現(xiàn)分類推進(jìn),分層教學(xué)的原則。為此,我又設(shè)計(jì)了一個(gè)提高練習(xí)題組,共有三道備選題目,以供程度較好學(xué)有余力的學(xué)生能夠更好的展示自己的解題能力,取得更進(jìn)一步的提高。
四、課堂意外預(yù)案:
新課程理念下的教學(xué)更多的關(guān)注學(xué)生自主探究、關(guān)注學(xué)生的個(gè)性發(fā)展,鼓勵(lì)學(xué)生勇于提出問(wèn)題,培養(yǎng)學(xué)生思維的批評(píng)性。在課堂上學(xué)生往往會(huì)提出讓老師感到“意外”的問(wèn)題,我在平時(shí)的教學(xué)中重視對(duì)“課堂意外預(yù)案”的探索和思考,備課時(shí)盡量設(shè)想課堂中可能會(huì)出現(xiàn)的各種情況,做到有備無(wú)患,以免在課堂中學(xué)生提出讓自己出乎意料的問(wèn)題,使自己陷入被動(dòng)尷尬境地。結(jié)合以往經(jīng)驗(yàn),在本節(jié)課,我提出兩個(gè)“意外預(yù)案”。
1.學(xué)生在做課本練習(xí)1(x+2)(x-3)>0 時(shí),可能會(huì)問(wèn)到轉(zhuǎn)化為不等式組{或{ 求解對(duì)不對(duì)。學(xué)生提出的問(wèn)題,想法非常好,應(yīng)給予肯定和鼓勵(lì),這與下節(jié)簡(jiǎn)單分式不等式和高次不等式的解法有關(guān),是解不等式的另一種解法——等價(jià)轉(zhuǎn)化法,不在本節(jié)課之列。
2.根據(jù)以往的經(jīng)驗(yàn),在解(x-1)(x+2)>1一類的不等式的時(shí)候,由于受方程(x+1)(x+2)=0 可轉(zhuǎn)化為x-1=0或x+2=0求解的影響,有可能會(huì)出現(xiàn)將不等式轉(zhuǎn)化為不等式組{來(lái)求解的錯(cuò)誤做法,教師要關(guān)注學(xué)生,及時(shí)發(fā)現(xiàn)問(wèn)題并給予糾正,指出上面的轉(zhuǎn)化不是等價(jià)轉(zhuǎn)化。
【《一元二次不等式的解法(第一課時(shí))》說(shuō)課稿】相關(guān)文章:
高中數(shù)學(xué)《一元二次不等式解法》說(shuō)課稿范文11-30
高中數(shù)學(xué)《一元二次不等式解法》說(shuō)課稿2篇07-12
一元二次方程的解法08-29
一元二次方程的解法教學(xué)設(shè)計(jì)08-29
一元二次方程教案08-29
一元二次方程及其應(yīng)用08-29
一元二次方程求根公式08-29
一元二次方程練習(xí)題08-29
中考數(shù)學(xué)一元一次不等式復(fù)習(xí)教學(xué)設(shè)計(jì)06-20
硬盤(pán)分區(qū)丟失的解法07-18