哥德巴赫是德國(guó)一位中學(xué)教師,也是一位著名的數(shù)學(xué)家,生于1690年,1725年當(dāng)選為俄國(guó)彼得堡科學(xué)院院士。1742年,哥德巴赫在教學(xué)中發(fā)現(xiàn),每個(gè)不小于6的偶數(shù)都是兩個(gè)素?cái)?shù)(只能被和它本身整除的數(shù))之和。如6=3+3,12=5+7等等。
公元1742年6月7日哥德巴赫(Goldbach)寫信給當(dāng)時(shí)的大數(shù)學(xué)家歐拉(Euler),提出了以下的猜想: (a) 任何一個(gè)>=6之偶數(shù),都可以表示成兩個(gè)奇質(zhì)數(shù)之和。
(b) 任何一個(gè)>=9之奇數(shù),都可以表示成三個(gè)奇質(zhì)數(shù)之和。
這就是著名的哥德巴赫猜想。歐拉在6月30日給他的回信中說(shuō),他相信這個(gè)猜想是正確的,但他不能證明。敘述如此簡(jiǎn)單的問(wèn)題,連歐拉這樣首屈一指的數(shù)學(xué)家都不能證明,這個(gè)猜想便引起了許多數(shù)學(xué)家的注意。從費(fèi)馬提出這個(gè)猜想至今,許多數(shù)學(xué)家都不斷努力想攻克它,但都沒(méi)有成功。當(dāng)然曾經(jīng)有人作了些具體的驗(yàn)證工作,例如: 6 = 3 + 3, 8 = 3 + 5, 10 = 5 + 5 = 3 + 7, 12 = 5 + 7, 14 = 7 + 7 = 3 + 11,16 = 5 + 11, 18 = 5 + 13, . . . . 等等。有人對(duì)33×108以內(nèi)且大過(guò)6之偶數(shù)一一進(jìn)行驗(yàn)算,哥德巴赫猜想(a)都成立。但驗(yàn)格的數(shù)學(xué)證明尚待數(shù)學(xué)家的努力。
從此,這道著名的數(shù)學(xué)難題引起了世界上成千上萬(wàn)數(shù)學(xué)家的注意。200年過(guò)去了,沒(méi)有人證明它。哥德巴赫猜想由此成為數(shù)學(xué)皇冠上一顆可望不可及的"明珠"。到了20世紀(jì)20年代,才有人開始向它靠近。1920年、挪威數(shù)學(xué)家布爵用一種古老的篩選法證明,得出了一個(gè)結(jié)論:每一個(gè)比大的偶數(shù)都可以表示為(99)。這種縮小包圍圈的辦法很管用,科學(xué)家們于是從(9十9)開始,逐步減少每個(gè)數(shù)里所含質(zhì)數(shù)因子的個(gè)數(shù),直到最后使每個(gè)數(shù)里都是一個(gè)質(zhì)數(shù)為止,這樣就證明了"哥德巴赫"。
目前最佳的結(jié)果是中國(guó)數(shù)學(xué)家陳景潤(rùn)於1966年證明的,稱為陳氏定理(Chen’s Theorem) ? "任何充份大的偶數(shù)都是一個(gè)質(zhì)數(shù)與一個(gè)自然數(shù)之和,而後者僅僅是兩個(gè)質(zhì)數(shù)的乘積。" 通常都簡(jiǎn)稱這個(gè)結(jié)果為大偶數(shù)可表示為 "1 + 2 "的形式。
在陳景潤(rùn)之前,關(guān)於偶數(shù)可表示為 s個(gè)質(zhì)數(shù)的乘積 與t個(gè)質(zhì)數(shù)的乘積之和(簡(jiǎn)稱"s + t "問(wèn)題)之進(jìn)展情況如下:
1920年,挪威的布朗(Brun)證明了 "9 + 9 "。
1924年,德國(guó)的拉特馬赫(Rademacher)證明了"7 + 7 "。
1932年,英國(guó)的埃斯特曼(Estermann)證明了 "6 + 6 "。
1937年,意大利的蕾西(Ricei)先後證明了"5 + 7 ", "4 + 9 ", "3 + 15 "和"2 + 366 "。
1938年,蘇聯(lián)的布赫 夕太勃(Byxwrao)證明了"5 + 5 "。
1940年,蘇聯(lián)的布赫 夕太勃(Byxwrao)證明了 "4 + 4 "。
1948年,匈牙利的瑞尼(Renyi)證明了"1 + c ",其中c是一很大的自然 數(shù)。
1956年,中國(guó)的王元證明了 "3 + 4 "。
1957年,中國(guó)的王元先后證明了 "3 + 3 "和 "2 + 3 "。
1962年,中國(guó)的潘承洞和蘇聯(lián)的巴爾巴恩(BapoaH)證明了 "1 + 5 ", 中國(guó)的王元證明了"1 + 4 "。
1965年,蘇聯(lián)的布赫 夕太勃(Byxwrao)和小維諾格拉多夫(BHHopappB),及 意大利的朋比利(Bombieri)證明了"1 + 3 "。
1966年,中國(guó)的陳景潤(rùn)證明了 "1 + 2 "。
最終會(huì)由誰(shuí)攻克 "1 + 1 "這個(gè)難題呢?現(xiàn)在還沒(méi)法預(yù)測(cè)。
哥德巴赫猜想被稱為“數(shù)學(xué)皇冠上的明珠”,無(wú)數(shù)數(shù)學(xué)家為了攻克這一難關(guān)進(jìn)行了許多努力,甚至是為之奮斗終生。雖然哥德巴赫猜想現(xiàn)在尚未被解決;但是,在這 250余年來(lái)的解題過(guò)程中卻誕生了許許多多的數(shù)學(xué)方法,這為解決其他的數(shù)學(xué)問(wèn)題提供了有力的幫助。從這個(gè)角度來(lái)看,哥德巴赫猜想的實(shí)際意義已經(jīng)遠(yuǎn)遠(yuǎn)超過(guò)證明一個(gè)數(shù)學(xué)命題的本身了。