、僦本L和⊙O相交 d
、 直線L和⊙O相切 d=r
、 直線L和⊙O相離 d>r
122 切線的判定定理 經(jīng)過(guò)半徑的外端并且垂直于這條半徑的直線是圓的切線
123 切線的性質(zhì)定理 圓的切線垂直于經(jīng)過(guò)切點(diǎn)的半徑
124 推論1 經(jīng)過(guò)圓心且垂直于切線的直線必經(jīng)過(guò)切點(diǎn)
125 推論2 經(jīng)過(guò)切點(diǎn)且垂直于切線的直線必經(jīng)過(guò)圓心
126 切線長(zhǎng)定理 從圓外一點(diǎn)引圓的兩條切線,它們的切線長(zhǎng)相等,圓心和這一點(diǎn)的連線平分兩條切線的夾角
127 圓的外切四邊形的兩組對(duì)邊的和相等
128 弦切角定理 弦切角等于它所夾的弧對(duì)的圓周角
129 推論 如果兩個(gè)弦切角所夾的弧相等,那么這兩個(gè)弦切角也相等
130 相交弦定理 圓內(nèi)的兩條相交弦,被交點(diǎn)分成的兩條線段長(zhǎng)的積相等
131 推論 如果弦與直徑垂直相交,那么弦的一半是它分直徑所成的兩條線段的比例中項(xiàng)
132 切割線定理 從圓外一點(diǎn)引圓的切線和割線,切線長(zhǎng)是這點(diǎn)到割線與圓交點(diǎn)的兩條線段長(zhǎng)的比例中項(xiàng)
2014中考數(shù)學(xué)公式
133 推論 從圓外一點(diǎn)引圓的兩條割線,這一點(diǎn)到每條割線與圓的交點(diǎn)的兩條線段長(zhǎng)的積相等
134 如果兩個(gè)圓相切,那么切點(diǎn)一定在連心線上
135 ①兩圓外離 d>R+r ②兩圓外切 d=R+r
、 兩圓相交 R-rr)
、 兩圓內(nèi)切 d=R-r(R>r) ⑤兩圓內(nèi)含dr)
136 定理 相交兩圓的連心線垂直平分兩圓的公共弦
137 定理 把圓分成n(n≥3):
⑴ 依次連結(jié)各分點(diǎn)所得的多邊形是這個(gè)圓的內(nèi)接正n邊形
、 經(jīng)過(guò)各分點(diǎn)作圓的切線,以相鄰切線的交點(diǎn)為頂點(diǎn)的多邊形是這個(gè)圓的外切正n邊形
138定理 任何正多邊形都有一個(gè)外接圓和一個(gè)內(nèi)切圓,這兩個(gè)圓是同心圓
139正n邊形的每個(gè)內(nèi)角都等于(n-2)×180°/n
140 定理 正n邊形的半徑和邊心距把正n邊形分成2n個(gè)全等的直角三角形
141 正n邊形的面積Sn=pnrn/2 p表示正n邊形的周長(zhǎng)
142 正三角形面積√3a/4 a表示邊長(zhǎng)
143 如果在一個(gè)頂點(diǎn)周圍有k個(gè)正n邊形的角,由于這些角的和應(yīng)為360°,因此k×(n-2)180°/n=360°化為(n-2)(k-2)=4
144 弧長(zhǎng)計(jì)算公式:L=n兀R/180
145 扇形面積公式:S扇形=n兀R^2/360=LR/2
146 內(nèi)公切線長(zhǎng)= d-(R-r) 外公切線長(zhǎng)= d-(R+r)
147 完全平方公式:(a+b)^2=a^2+2ab+b^2 (a-b)^2=a^2-2ab+b^2
148 平方差公式:(a+b)(a-b)=a^2-b^2