GMAT數(shù)學考試拿高分困難嗎?其實并不困難?忌绻軌蛟贕MAT數(shù)學備考的過程中,掌握一定的解題技巧,那么GMAT數(shù)學考試的高分就能夠觸手可及。
一、數(shù)形結(jié)合
數(shù)形結(jié)合的思想,其實質(zhì)是將抽象的數(shù)學語言與直觀的圖形結(jié)合起來,使抽象思維和形象思維結(jié)合,通過對圖形的認識、數(shù)形結(jié)合的轉(zhuǎn)化,可以培養(yǎng)思維的靈活性、形象性,使問題化難為易,化抽象為具體。通過“形”往往可以解決用“數(shù)”很難解決的問題。
二、換元
換元法又稱變量替換法,即根據(jù)所要求解的式子的結(jié)構(gòu)特征,巧妙地設置新的變量來替代原來表達式中的某些式子或變量,對新的變量求出結(jié)果后,返回去再求出原變量的結(jié)果。換元法通過引入新的變量,將分散的條件聯(lián)系起來,使超越式化為有理式、高次式化為低次式、隱性關(guān)系式化為顯性關(guān)系式,從而達到化繁為簡、變未知為已知的目的。
三、轉(zhuǎn)化與化歸
所謂轉(zhuǎn)化與化歸思想方法,就是在研究和解決有關(guān)數(shù)學問題時,采用某種手段將問題通過變換使之轉(zhuǎn)化,進而達到解決的一種方法。一般總是將復雜的問題通過轉(zhuǎn)化為簡單的問題,將難解的問題轉(zhuǎn)化為容易的問題,將未解決的問題變換轉(zhuǎn)化為已解決的問題。
轉(zhuǎn)化與化歸的思想方法是數(shù)學中最基本的思想方法。數(shù)學中一切問題的解決都離不開轉(zhuǎn)化與化歸,數(shù)形結(jié)合思想體現(xiàn)了數(shù)與形的相互轉(zhuǎn)化;函數(shù)與方程思想體現(xiàn)了函數(shù)、方程、不等式間的相互轉(zhuǎn)化;分類討論思想體現(xiàn)了局部與整體的相互轉(zhuǎn)化,以上三種思想方法都是轉(zhuǎn)化與化歸思想的具體體現(xiàn)。各種變換法、分析法、反證法、待定系數(shù)法、構(gòu)造法等都是轉(zhuǎn)化的手段,所以說轉(zhuǎn)化與化歸是數(shù)學思想方法的靈魂。
四、函數(shù)與方程
函數(shù)思想指運用函數(shù)的概念和性質(zhì),通過類比、聯(lián)想、轉(zhuǎn)化、合理地構(gòu)造函數(shù),然后去分析、研究問題,轉(zhuǎn)化問題和解決問題。方程思想是通過對問題的觀察、分析、判斷等一系列的思維過程中,具備標新立異、獨樹一幟的深刻性、獨創(chuàng)性思維,將問題化歸為方程的問題,利用方程的性質(zhì)、定理,實現(xiàn)問題與方程的互相轉(zhuǎn)化接軌,達到解決問題的目的。
五、分類討論
所謂分類討論,就是當問題所給的對象不能進行統(tǒng)一研究時,我們就需要對研究的對象進行分類,然后對每一類分別研究,得出每一類的結(jié)論,最后綜合各類的結(jié)果得到整個問題的解答。實質(zhì)上分類討論是“化整為零,各個擊破,再積零為整”的策略。分類討論時應注重理解和掌握分類的原則、方法與技巧、做到“確定對象的全體,明確分類的標準,分層別類不重復、不遺漏的分析討論。”
以上就是GMAT數(shù)學考試中常用的5種解題方法,考試可以據(jù)此進行針對性的練習,熟練掌握GMAT數(shù)學的常用解題技巧,以達到在短期內(nèi)提升GMAT數(shù)學考試成績的目的。