高等數(shù)學(xué)是考研數(shù)學(xué)的重中之重,備考高等數(shù)學(xué)要特別注意以下三個(gè)方面。
一、按照大綱對(duì)數(shù)學(xué)基本概念、基本方法、基本定理準(zhǔn)確把握。
數(shù)學(xué)是一門演繹的科學(xué),靠?jī)e幸押題是行不通的。只有對(duì)基本概念有深入理解,牢牢掌握基本定理和公式,才能找到解題的突破口和切入點(diǎn)。分析近幾年考生的數(shù)學(xué)答卷可以發(fā)現(xiàn),考生失分的一個(gè)重要原因就是對(duì)基本概念、定理理解不準(zhǔn)確,數(shù)學(xué)中最基本的方法掌握不好,給解題帶來思維上的困難。數(shù)學(xué)的概念和定理是組成數(shù)學(xué)試題的基本元件,數(shù)學(xué)思維過程離不開數(shù)學(xué)概念和定理,因此,正確理解和掌握好數(shù)學(xué)概念、定理和方法是取得好成績(jī)的基礎(chǔ)和前提。
二、要加強(qiáng)解綜合性試題和應(yīng)用題能力的訓(xùn)練,力求在解題思路上有所突破。
綜合題的考查內(nèi)容可以是同一學(xué)科的不同章節(jié),也可以是不同學(xué)科的。近幾年試卷中常見的綜合題有:級(jí)數(shù)與積分的綜合題;微積分與微分方程的綜合題;求極限的綜合題;空間解析幾何與多元函數(shù)微分的綜合題;線性代數(shù)與空間解析幾何的綜合題;以及微積分與微分方程在幾何上、物理上、經(jīng)濟(jì)上的應(yīng)用題等等。在解綜合題時(shí),迅速地找到解題的切入點(diǎn)是關(guān)鍵一步,為此需要熟悉規(guī)范的解題思路。
三、重視歷年試題的強(qiáng)化訓(xùn)練。
統(tǒng)計(jì)表明,每年的研究生入學(xué)考試高等數(shù)學(xué)內(nèi)容較之前幾年都有較大的重復(fù)率,近年試題與往年考題雷同的占50%左右,這些考題或者改變某一數(shù)字,或改變一種說法,但解題的思路和所用到的知識(shí)點(diǎn)幾乎一樣。所以希望考生要注意年年被考到的內(nèi)容,對(duì)往年考題要全部消化鞏固。這樣,通過對(duì)考研的試題類型、特點(diǎn)、思路進(jìn)行系統(tǒng)的歸納總結(jié),并做一定數(shù)量習(xí)題,有意識(shí)地重點(diǎn)解決解題思路問題。對(duì)于那些具有很強(qiáng)的典型性、靈活性、啟發(fā)性和綜合性的題,要特別注重解題思路和技巧的培養(yǎng)。盡管試題千變?nèi)f化,但其知識(shí)結(jié)構(gòu)基本相同,題型相對(duì)固定。要特別注意以題型為思路歸納總結(jié)。