數(shù)學(xué)建模論文
數(shù)學(xué)建模就是根據(jù)實(shí)際問題來建立數(shù)學(xué)模型,對(duì)數(shù)學(xué)模型來進(jìn)行求解,然后根據(jù)結(jié)果去解決實(shí)際問題。當(dāng)需要從定量的角度分析和研究一個(gè)實(shí)際問題時(shí),人們就要在深入調(diào)查研究、了解對(duì)象信息、作出簡(jiǎn)化假設(shè)、分析內(nèi)在規(guī)律等工作的基礎(chǔ)上,用數(shù)學(xué)的符號(hào)和語言作表述來建立數(shù)學(xué)模型。
數(shù)學(xué)建模論文1
大學(xué)數(shù)學(xué)包含微積分、線性代數(shù)、概率論與數(shù)理統(tǒng)計(jì)三門基礎(chǔ)課程,這是高校經(jīng)管類專業(yè)必修課程;更高級(jí)的數(shù)學(xué)課程還有運(yùn)籌學(xué)、最優(yōu)化理論,這些在中高級(jí)西方經(jīng)濟(jì)學(xué)中會(huì)經(jīng)常用到,F(xiàn)實(shí)經(jīng)濟(jì)中存在很多問題都與數(shù)學(xué)緊密相關(guān),都需要嚴(yán)謹(jǐn)?shù)臄?shù)學(xué)方法去解決,因此數(shù)學(xué)的學(xué)習(xí)是非常重要的。數(shù)學(xué)的學(xué)習(xí),一方面能夠培養(yǎng)學(xué)生的邏輯思維能力和空間想象能力,另一方面,數(shù)學(xué)的系統(tǒng)學(xué)習(xí)為經(jīng)管專業(yè)后續(xù)課程(如西方經(jīng)濟(jì)學(xué)、計(jì)量經(jīng)濟(jì)學(xué))提供了數(shù)學(xué)分析工具和計(jì)算方法。除了需要掌握數(shù)學(xué)分析和計(jì)算能力,經(jīng)管專業(yè)應(yīng)該更加注重培養(yǎng)學(xué)生的經(jīng)濟(jì)直覺和數(shù)學(xué)建模能力,讓學(xué)生形象地理解數(shù)學(xué)定義和經(jīng)濟(jì)現(xiàn)象。雖然現(xiàn)在高校中經(jīng)管類專業(yè)的數(shù)學(xué)教育過程融合了一些本專業(yè)的知識(shí),但仍存在很多問題。筆者根據(jù)自己以及同行的教學(xué)經(jīng)驗(yàn),提出相應(yīng)的改革措施以更好挖掘數(shù)學(xué)方法在經(jīng)管中的有效作用。
一、經(jīng)管類專業(yè)大學(xué)數(shù)學(xué)的特點(diǎn)
每個(gè)專業(yè)都有其獨(dú)特的學(xué)習(xí)內(nèi)容和方法。經(jīng)管專業(yè)作為我國(guó)培養(yǎng)經(jīng)濟(jì)工作人員的特殊專業(yè)而成為國(guó)家重視、社會(huì)關(guān)注的專業(yè)。大學(xué)數(shù)學(xué)是社會(huì)科學(xué)和自然科學(xué)的基礎(chǔ),因此其在經(jīng)濟(jì)學(xué)理論中有著舉足輕重的地位,數(shù)學(xué)可以為經(jīng)濟(jì)學(xué)中的很多問題提供思想和方法的支持。經(jīng)管類專業(yè)數(shù)學(xué)的學(xué)習(xí)有如下特點(diǎn)。
1.經(jīng)管專業(yè)的數(shù)學(xué)和經(jīng)濟(jì)學(xué)問題緊密相關(guān)
經(jīng)管專業(yè)要學(xué)習(xí)和解決經(jīng)濟(jì)相關(guān)內(nèi)容,因此,經(jīng)濟(jì)類的數(shù)學(xué)教育要圍繞著經(jīng)濟(jì)問題展開討論,例如簡(jiǎn)單的經(jīng)濟(jì)問題有價(jià)格函數(shù)、需求函數(shù)、供給函數(shù)以及邊際成本的分析,復(fù)雜一些的還有競(jìng)爭(zhēng)性市場(chǎng)分析、壟斷競(jìng)爭(zhēng)和寡頭壟斷、博弈論和競(jìng)爭(zhēng)策略、生產(chǎn)和交換的帕累托最優(yōu)條件、信息不對(duì)稱的市場(chǎng)這些都需要用微積分的知識(shí)理解。把數(shù)學(xué)知識(shí)融入經(jīng)濟(jì)學(xué),能夠給解決經(jīng)濟(jì)學(xué)問題提供有效的技術(shù)支持。例如通過畫出各種函數(shù)的圖像,可以讓學(xué)生更直觀地了解價(jià)格、需求、供給的關(guān)系,可以更形象地看出它們之間的依賴關(guān)系。微積分中導(dǎo)數(shù)的學(xué)習(xí)應(yīng)用到經(jīng)濟(jì)中為經(jīng)濟(jì)利益最大化提供了分析方法,例如需求理論可以轉(zhuǎn)化成一個(gè)約束最優(yōu)化問題,用拉格朗曰乘數(shù)法進(jìn)行求導(dǎo)計(jì)算,從而求出目標(biāo)函數(shù)的最優(yōu)值。另外,消費(fèi)者剩余可以轉(zhuǎn)化成定積分進(jìn)行計(jì)算,人口阻滯增長(zhǎng)模型可以用微分方程解釋。
2.經(jīng)管專業(yè)的數(shù)學(xué)學(xué)習(xí)注重經(jīng)濟(jì)直覺培養(yǎng)
數(shù)學(xué)的學(xué)習(xí)可以訓(xùn)練和培養(yǎng)學(xué)生的邏輯思維能力,一般自然科學(xué)專業(yè)的數(shù)學(xué)學(xué)習(xí)注重于各種問題的來源以及證明。然而經(jīng)管專業(yè)的數(shù)學(xué)主要為學(xué)生培養(yǎng)經(jīng)濟(jì)直覺并引導(dǎo)其進(jìn)行有效計(jì)算,因此需要著重培養(yǎng)經(jīng)管專業(yè)學(xué)生的數(shù)學(xué)計(jì)算能力。例如,在講最值問題時(shí)可以讓學(xué)生計(jì)算利潤(rùn)最大化的例子,利用微積分的知識(shí)計(jì)算出最大利潤(rùn),這樣既培養(yǎng)了學(xué)生的數(shù)學(xué)計(jì)算能力,又讓學(xué)生理解了經(jīng)濟(jì)學(xué)概念。
二、經(jīng)管類專業(yè)學(xué)習(xí)數(shù)學(xué)的過程中出現(xiàn)的問題
近年來,大學(xué)數(shù)學(xué)教育改革取得了一定效果,但是還存在很多問題。例如,有些學(xué)校不重視大學(xué)數(shù)學(xué)課程的學(xué)習(xí),只注重專業(yè)課的學(xué)習(xí)。實(shí)際上數(shù)學(xué)學(xué)習(xí)的效果直接影響后續(xù)專業(yè)課的學(xué)習(xí)。還有部分院校教師教授經(jīng)管課程時(shí)還停留在純粹的數(shù)學(xué)理論上,雖然有的高校在高等數(shù)學(xué)教育中很大程度上融入了經(jīng)濟(jì)中的各類問題,但是由于高校教師都是數(shù)學(xué)專業(yè)出身,對(duì)經(jīng)濟(jì)類專業(yè)中的數(shù)學(xué)問題不甚了解,因此不能很好地解釋相應(yīng)的經(jīng)濟(jì)現(xiàn)象。
另外,經(jīng)管類招生一般同時(shí)招收了文科和理科生,從而學(xué)生的數(shù)學(xué)基礎(chǔ)大相徑庭,使得大學(xué)數(shù)學(xué)的教學(xué)存在一定困難。還有大學(xué)的學(xué)習(xí)任務(wù)重而老師授課時(shí)間有限,對(duì)于基礎(chǔ)較差的學(xué)生,教師又不能非常詳細(xì)地復(fù)習(xí)學(xué)生高中學(xué)過的知識(shí),因而造成基礎(chǔ)好的學(xué)生學(xué)起來輕松自如,學(xué)習(xí)效果較好,而基礎(chǔ)差的學(xué)生學(xué)起來吃力,學(xué)習(xí)的效果也不盡如人意。
三、改革措施培養(yǎng)學(xué)生經(jīng)濟(jì)直覺和數(shù)學(xué)建模能力
優(yōu)化教學(xué)內(nèi)容,根據(jù)專業(yè)特點(diǎn)選取相關(guān)實(shí)例來理解數(shù)學(xué)定義。由于大學(xué)課程任務(wù)重,使得大學(xué)數(shù)學(xué)的學(xué)習(xí)課時(shí)相對(duì)變少,這就要求教師上課時(shí)要優(yōu)化教學(xué)內(nèi)容,適當(dāng)刪減純數(shù)學(xué)理論的學(xué)習(xí),在不影響后續(xù)課程的條件下,可以刪除一些難度較大的純理論性的內(nèi)容,擴(kuò)充一些和經(jīng)管專業(yè)知識(shí)相關(guān)的內(nèi)容。教師在上課時(shí),要根據(jù)學(xué)生所學(xué)專業(yè)的特點(diǎn),選取相關(guān)概念、相關(guān)實(shí)例,讓學(xué)生更直觀、更形象地學(xué)習(xí)數(shù)學(xué)知識(shí),從而培養(yǎng)學(xué)生的經(jīng)濟(jì)直覺。例如,在學(xué)習(xí)微積分中導(dǎo)數(shù)的相關(guān)概念時(shí),可選取有關(guān)成本函數(shù)、收入函數(shù)和利潤(rùn)函數(shù)的例題來求邊際成本、邊際收入和邊際利潤(rùn),從而讓學(xué)生了解導(dǎo)數(shù)在本專業(yè)中的應(yīng)用。在講線性代數(shù)的矩陣概念時(shí),可以給學(xué)生講解經(jīng)濟(jì)學(xué)中投入產(chǎn)出模型。在講股票投資的時(shí)候可以和概率論聯(lián)系在一起,通過概率論的理論解釋可以說明股票投資是具有隨機(jī)性的,在股票市場(chǎng)沒有絕對(duì)的贏家。在講拉格朗曰方法的時(shí)候可以引入影子價(jià)格的概念,從而理解影子價(jià)格的經(jīng)濟(jì)現(xiàn)象解釋。只有讓數(shù)學(xué)和學(xué)生所學(xué)專業(yè)掛鉤,才能讓學(xué)生輕松地學(xué)習(xí)數(shù)學(xué)定義,并了解一些經(jīng)濟(jì)學(xué)專業(yè)名詞,達(dá)到讓數(shù)學(xué)更好的為專業(yè)知識(shí)服務(wù)的目的。
教學(xué)過程中要注重學(xué)生數(shù)學(xué)建模思想的培養(yǎng)。經(jīng)管類專業(yè)學(xué)生學(xué)習(xí)數(shù)學(xué)課程方面是為了解決專業(yè)內(nèi)容中的問題,另一方面是還需要培養(yǎng)學(xué)生的邏輯思維能力和分析問題、解決問題的能力。因此,在講授經(jīng)濟(jì)中的數(shù)學(xué)問題時(shí),還要教會(huì)學(xué)生根據(jù)經(jīng)濟(jì)問題建立相應(yīng)的數(shù)學(xué)模型。建模就是把經(jīng)濟(jì)學(xué)中一些現(xiàn)象或者問題用數(shù)學(xué)語言表述出來,然后進(jìn)行模型求解,從而解釋經(jīng)濟(jì)現(xiàn)象或者解決相應(yīng)的經(jīng)濟(jì)問題。通過建立數(shù)學(xué)模型把經(jīng)管專業(yè)中的經(jīng)濟(jì)學(xué)問題轉(zhuǎn)化成數(shù)學(xué)問題,然后通過求解數(shù)學(xué)模型得出相應(yīng)答案,從而解決該經(jīng)濟(jì)問題。因此,建立數(shù)學(xué)模型非常重要。例如求解最大利潤(rùn)問題、最小成本問題可以引導(dǎo)學(xué)生通過建立利潤(rùn)和成本函數(shù),從而轉(zhuǎn)化成一個(gè)最優(yōu)化問題,并且在求解該問題時(shí),需要用到導(dǎo)數(shù)(偏導(dǎo)數(shù))的知識(shí),這樣既加深了學(xué)生對(duì)數(shù)學(xué)知識(shí)的理解,又體會(huì)到數(shù)學(xué)知識(shí)在經(jīng)濟(jì)學(xué)中的重要作用。在學(xué)習(xí)統(tǒng)計(jì)學(xué)的F檢驗(yàn)和T檢驗(yàn)時(shí),可以引導(dǎo)學(xué)生建立計(jì)量經(jīng)濟(jì)學(xué)中要學(xué)習(xí)的回歸模型,一開始可以引入一元線性回歸模型,再過渡到二元線性回歸模型,對(duì)于二元線性回歸模型可以形象地借助二維圖像進(jìn)行說明,最后分析多元線性回歸模型,特別地,還可以指出,在回歸模型的建立中本質(zhì)上用到了微積分中學(xué)習(xí)的最小二乘法。在線性回歸模型學(xué)習(xí)完以后,還要進(jìn)一步學(xué)習(xí)更加復(fù)雜的非線性模型,以便讓學(xué)生掌握由簡(jiǎn)單到復(fù)雜的數(shù)學(xué)建模過程?傊,在整個(gè)數(shù)學(xué)的學(xué)習(xí)過程中,要經(jīng)常讓學(xué)習(xí)練習(xí)如何正確地建立模型,以提高學(xué)生分析問題和解決問題的能力。
教師要不斷了解經(jīng)管專業(yè)知識(shí),以適應(yīng)學(xué)生學(xué)習(xí)的需要。教授經(jīng)管類專業(yè)的任課教師要不斷閱讀經(jīng)管類專業(yè)相關(guān)書籍,充分了解經(jīng)管類專業(yè)知識(shí)要用到的數(shù)學(xué)知識(shí)和數(shù)學(xué)思想,把經(jīng)濟(jì)學(xué)和數(shù)學(xué)融會(huì)貫通。只有這樣,教師在上課時(shí)才能做到有的放矢,才能時(shí)刻圍繞學(xué)生所學(xué)所需的專業(yè)知識(shí)來講授數(shù)學(xué)知識(shí),真正做到數(shù)學(xué)為專業(yè)服務(wù)。整個(gè)教學(xué)過程中,教師要對(duì)經(jīng)管類專業(yè)知識(shí)有深入的理解,才能結(jié)合數(shù)學(xué)給學(xué)生解釋清楚經(jīng)濟(jì)學(xué)概念和經(jīng)濟(jì)學(xué)原理,才不至于讓所學(xué)內(nèi)容與專業(yè)知識(shí)脫軌。教師要了解經(jīng)濟(jì)學(xué)的前沿進(jìn)展,從而可以在上課過程中引入生動(dòng)而形象的經(jīng)濟(jì)實(shí)例,做到學(xué)教結(jié)合,真正成為學(xué)生學(xué)習(xí)的引路人。
教學(xué)方法要多元化,以提高學(xué)生學(xué)習(xí)興趣。目前,經(jīng)濟(jì)數(shù)學(xué)的教學(xué)依然是傳統(tǒng)的教學(xué)模式,即教師講授、學(xué)生被動(dòng)接受的模式。這種教學(xué)方法嚴(yán)重挫傷了學(xué)生學(xué)習(xí)的積極性和主動(dòng)性。因此,教學(xué)方法的選擇至關(guān)重要。這就要求教師要根據(jù)學(xué)生的特點(diǎn),做到因材施教。講課過程中也不能一味羅列一些數(shù)學(xué)定義和數(shù)學(xué)定理,而要注重與學(xué)生的互動(dòng),以提高學(xué)生學(xué)習(xí)的積極性。教師在上課過程中還要注重學(xué)生興趣的培養(yǎng),可以講一些獲得諾貝爾獎(jiǎng)的經(jīng)濟(jì)學(xué)家的事跡,很多獲得諾貝爾獎(jiǎng)的經(jīng)濟(jì)學(xué)家都有很好的數(shù)學(xué)基礎(chǔ),在這些基礎(chǔ)上他們進(jìn)一步在學(xué)習(xí)的過程中加強(qiáng)了自己的經(jīng)濟(jì)直覺培養(yǎng),最后取得學(xué)術(shù)的成功。通過經(jīng)濟(jì)學(xué)家的故事可以啟發(fā)引導(dǎo)學(xué)生去接觸最新的經(jīng)濟(jì)學(xué)理念,從而逐步探索新知識(shí),然后啟發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)和經(jīng)濟(jì)學(xué)的興趣。同時(shí)要讓學(xué)生多獨(dú)立思考,布置一些有趣的課后習(xí)題,特別是可布置一些結(jié)合生活中的經(jīng)濟(jì)實(shí)例的數(shù)學(xué)習(xí)題,通過解答這些習(xí)題,學(xué)生不但可以學(xué)習(xí)數(shù)學(xué)知識(shí),還可以讓學(xué)生體會(huì)數(shù)學(xué)和經(jīng)濟(jì)學(xué)的生動(dòng)結(jié)合,最后引導(dǎo)學(xué)生思考一些更加復(fù)雜的經(jīng)濟(jì)問題并用數(shù)學(xué)知識(shí)解決問題。只有老師生動(dòng)講解、引導(dǎo)和學(xué)生快樂、輕松學(xué)習(xí)的完美結(jié)合,才能激發(fā)學(xué)生的學(xué)習(xí)興趣,起到事半功倍的學(xué)習(xí)效果。
四、結(jié)語
在高校數(shù)學(xué)教學(xué)中,應(yīng)根據(jù)經(jīng)管專業(yè)特點(diǎn)采取有效的教學(xué)方法教授數(shù)學(xué)知識(shí),特別要注意學(xué)生經(jīng)濟(jì)直覺的培養(yǎng),這就要求在教學(xué)過程中可以適當(dāng)減少數(shù)學(xué)的嚴(yán)格證明,注重?cái)?shù)學(xué)概念在經(jīng)濟(jì)學(xué)中的應(yīng)用,從而讓學(xué)生形象生動(dòng)的理解數(shù)學(xué)知識(shí)在經(jīng)濟(jì)學(xué)中的重要作用。另外,教學(xué)過程中還需要培養(yǎng)學(xué)生的數(shù)學(xué)建模能力,并培養(yǎng)學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣,引導(dǎo)學(xué)生將所學(xué)數(shù)學(xué)知識(shí)應(yīng)用到實(shí)際工作中,真正做到學(xué)有所用,從而培養(yǎng)優(yōu)秀的經(jīng)濟(jì)類人才。
數(shù)學(xué)建模論文2
3.3增強(qiáng)選擇數(shù)學(xué)模型的能力。
選擇數(shù)學(xué)模型是數(shù)學(xué)能力的反映。數(shù)學(xué)模型的建立有多種方法,怎樣選擇一個(gè)最佳的模型,體現(xiàn)數(shù)學(xué)能力的強(qiáng)弱。建立數(shù)學(xué)模型主要涉及到方程、函數(shù)、不等式、數(shù)列通項(xiàng)公式、求和公式、曲線方程等類型。結(jié)合教學(xué)內(nèi)容,以函數(shù)建模為例,以下實(shí)際問題所選擇的數(shù)學(xué)模型列表:
函數(shù)建模類型實(shí)際問題
一次函數(shù)成本、利潤(rùn)、銷售收入等
二次函數(shù)優(yōu)化問題、用料最省問題、造價(jià)最低、利潤(rùn)最大等
冪函數(shù)、指數(shù)函數(shù)、對(duì)數(shù)函數(shù)細(xì)胞分裂、生物繁殖等
三角函數(shù)測(cè)量、交流量、力學(xué)問題等
3.4加強(qiáng)數(shù)學(xué)運(yùn)算能力。
數(shù)學(xué)應(yīng)用題一般運(yùn)算量較大、較復(fù)雜,且有近似計(jì)算。有的盡管思路正確、建模合理,但計(jì)算能力欠缺,就會(huì)前功盡棄。所以加強(qiáng)數(shù)學(xué)運(yùn)算推理能力是使數(shù)學(xué)建模正確求解的關(guān)鍵所在,忽視運(yùn)算能力,特別是計(jì)算能力的培養(yǎng),只重視推理過程,不重視計(jì)算過程的做法是不可取的。
利用數(shù)學(xué)建模解數(shù)學(xué)應(yīng)用題對(duì)于多角度、多層次、多側(cè)面思考問題,培養(yǎng)學(xué)生發(fā)散思維能力是很有益的,是提高學(xué)生素質(zhì),進(jìn)行素質(zhì)教育的一條有效途徑。同時(shí)數(shù)學(xué)建模的應(yīng)用也是科學(xué)實(shí)踐,有利于實(shí)踐能力的培養(yǎng),是實(shí)施素質(zhì)教育所必須的,需要引起教育工作者的足夠重視。
數(shù)學(xué)建模論文3
一、目前大學(xué)數(shù)學(xué)教育中存在的問題
人們常說“數(shù)學(xué)是科學(xué)王國(guó)的女王”,但是女王的權(quán)力只有找到受力物才能體現(xiàn)她的價(jià)值,關(guān)起門來學(xué)數(shù)學(xué),不體現(xiàn)數(shù)學(xué)的應(yīng)用,是難以把數(shù)學(xué)學(xué)活的,學(xué)生們?nèi)舳贾挥屑償?shù)學(xué)的理論,沒有實(shí)際運(yùn)用的實(shí)踐,容易重現(xiàn)長(zhǎng)平之戰(zhàn)的悲劇。比如前不久20xx年的國(guó)際數(shù)學(xué)建模培訓(xùn)中,一個(gè)組的三名同學(xué)建立好了模型,也有了解題思路和方法但就是寫不出積分表達(dá)式,找到原因后才知道,原來極限與求和符號(hào)連寫不知道就是積分,能代表學(xué)校參加國(guó)際數(shù)學(xué)建模比賽的學(xué)生數(shù)學(xué)功底應(yīng)該是比較不錯(cuò)的學(xué)生,若單問極限或單問求和都沒問題,問題在于實(shí)際問題解決的少,缺乏理論聯(lián)系實(shí)踐的能力。
二、數(shù)學(xué)建模對(duì)大學(xué)數(shù)學(xué)教育的影響
(一)數(shù)學(xué)建模能調(diào)動(dòng)學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣
俗話說“死學(xué)的不如會(huì)學(xué)的,會(huì)學(xué)的不如好學(xué)的”,興趣才是最好的老師。數(shù)學(xué)建模的問題來自于實(shí)踐,來自于生活,同學(xué)們逐漸發(fā)現(xiàn)自己身邊的問題原來和自己所學(xué)的知識(shí)關(guān)系是那樣的密切,再?zèng)]有空中樓閣之感,同時(shí)在實(shí)踐過程中,對(duì)知識(shí)的理解也比原來深刻的多。收獲的喜悅來自一點(diǎn)一滴的積累,學(xué)習(xí)的快樂與自信也逐漸建立起來。
(二)數(shù)學(xué)建模能提高學(xué)生的數(shù)學(xué)應(yīng)用能力
建模對(duì)數(shù)學(xué)應(yīng)用能力的培養(yǎng)是不言而喻的,首先建造模型的目的就是為了解決問題,問題的順利解決有賴于各種數(shù)學(xué)方法。大學(xué)數(shù)學(xué)教育最欠缺的實(shí)踐與體驗(yàn),在這里確是司空見慣的,學(xué)生的數(shù)學(xué)應(yīng)用能力在這里得到最大限度的提升,由此看來數(shù)學(xué)建模是數(shù)學(xué)應(yīng)用的必由之路,是聯(lián)系數(shù)學(xué)與實(shí)際問題的橋梁。
(三)數(shù)學(xué)建模能培養(yǎng)學(xué)生自學(xué)能力
數(shù)學(xué)建模的過程需要用到方方面面的知識(shí),“書到用時(shí)方恨少”可能是每一位可能每一位建模的學(xué)生都有過的體會(huì)。想要解決各種建模問題,就必須學(xué)習(xí)很多建模常用的方法與知識(shí),從輔導(dǎo)老師處獲得是一種途徑,更重要的是要有自學(xué)能力。同一個(gè)學(xué)校的學(xué)生幾乎是同一批老師教過可是對(duì)同一個(gè)建模問題的方法運(yùn)用卻往往是不同的,有的學(xué)生用的方法甚至輔導(dǎo)教師組根本就沒有講過,比如我知道這樣一名同學(xué),他在圖書館借書的時(shí)候發(fā)現(xiàn)有一本灰色模型的書出于好奇就試著讀了一下,發(fā)現(xiàn)灰色模型可以用來解決不確定因素的預(yù)測(cè)問題,而當(dāng)時(shí)灰色模型不是建模教師組輔導(dǎo)時(shí)所授課的內(nèi)容,他結(jié)合平時(shí)建模的經(jīng)驗(yàn),發(fā)現(xiàn)經(jīng)常需要做一些數(shù)據(jù)處理和預(yù)測(cè)的問題,于是就自己花時(shí)間對(duì)灰色模型做了比較透徹的學(xué)習(xí),說來也巧在隨后的建模國(guó)賽和國(guó)際建模中就是利用了灰色模型得到了非常不錯(cuò)的成績(jī)。由此可見自學(xué)能力對(duì)于數(shù)學(xué)建模是非常重要的,同樣參加過數(shù)學(xué)建模的同學(xué)都反映自己的自學(xué)能力較建模前有了很大的進(jìn)步。
(四)數(shù)學(xué)建模能提高學(xué)生的創(chuàng)新能力
數(shù)學(xué)建模比賽是要解決生產(chǎn)或生活中的一些實(shí)際問題,而這些問題往往還沒有人給出系統(tǒng)或者正確的解答,直接涉及的現(xiàn)成資料一般非常少,對(duì)于建模的學(xué)生來說需要做的就是從前人的數(shù)據(jù)或者簡(jiǎn)陋的方法中建立自己解決問題的模型。這本身就是一種創(chuàng)新行為,因?yàn)榇蠹叶贾莱u毫無意義。說到創(chuàng)新不只是解題方法的創(chuàng)新,還包括模型創(chuàng)新和結(jié)果的優(yōu)化,創(chuàng)新是一篇建模文章的價(jià)值所在,正是基于這一點(diǎn),創(chuàng)新的意識(shí)滲透入每一名建模同學(xué)的心中,并在不斷的訓(xùn)練中提升了自己創(chuàng)新的能力。大學(xué)數(shù)學(xué)教育存在一定提升的空間,概括來說主要是注重知識(shí)的積累忽視能力的培養(yǎng),但是數(shù)學(xué)建模確實(shí)一個(gè)專門培養(yǎng)能力的地方,同時(shí)數(shù)學(xué)建模又需要課堂上的知識(shí)積累做基礎(chǔ),如果能將二者取長(zhǎng)補(bǔ)短,將是利于數(shù)學(xué)教育、利于人才培養(yǎng)、利于學(xué)生成才、利于國(guó)家發(fā)展與社會(huì)進(jìn)步。同時(shí)我們也應(yīng)該看到數(shù)學(xué)建模對(duì)數(shù)學(xué)教育的影響是積極的,但是如何把數(shù)學(xué)建模與大學(xué)數(shù)學(xué)教學(xué)相結(jié)合,目前還沒有統(tǒng)一與現(xiàn)成的答案,這可能需要我們這輩教育工作者努力思考與嘗試研究的問題。
簡(jiǎn)單的數(shù)學(xué)建模小論文
無論在學(xué)習(xí)或是工作中,大家都有寫論文的經(jīng)歷,對(duì)論文很是熟悉吧,論文的類型很多,包括學(xué)年論文、畢業(yè)論文、學(xué)位論文、科技論文、成果論文等。寫論文的注意事項(xiàng)有許多,你確定會(huì)寫嗎?以下是小編為大家收集的簡(jiǎn)單的數(shù)學(xué)建模小論文,歡迎閱讀,希望大家能夠喜歡。
隨著我國(guó)課程改革工作的不斷開展,小學(xué)數(shù)學(xué)學(xué)科的教學(xué)工作也已經(jīng)有了很大的改變,如今我國(guó)小學(xué)數(shù)學(xué)教師將生活情境運(yùn)用在教學(xué)工作中的各個(gè)方面對(duì)學(xué)生進(jìn)行教學(xué),一方面可以使學(xué)生對(duì)數(shù)學(xué)知識(shí)的實(shí)用性有所認(rèn)識(shí),另一方面教師可以通過生活情境的運(yùn)用讓學(xué)生對(duì)數(shù)學(xué)知識(shí)更好的理解,從而使學(xué)生成績(jī)及綜合素質(zhì)得到提高。數(shù)學(xué)學(xué)科是從現(xiàn)實(shí)生活中提煉出來的,因此小學(xué)數(shù)學(xué)教師在對(duì)學(xué)生進(jìn)行教學(xué)時(shí),可以將生活情境運(yùn)用于教學(xué)工作中,從而讓學(xué)生能夠運(yùn)用數(shù)學(xué)知識(shí)解決生活中的問題;谝陨蟽(nèi)容,教師需要將教學(xué)工作和生活建立更多聯(lián)系,對(duì)學(xué)生已有的生活經(jīng)驗(yàn)進(jìn)行最大限度的利用,學(xué)生便可以對(duì)抽象數(shù)學(xué)知識(shí)進(jìn)行更好地理解,而教師通過生活情境的運(yùn)用可以對(duì)學(xué)生創(chuàng)新及探究能力進(jìn)行培養(yǎng)。下面我將就運(yùn)用方面教學(xué)工作進(jìn)行分析。
一、將生活情境運(yùn)用于例題教學(xué)
小學(xué)數(shù)學(xué)教師在對(duì)學(xué)生進(jìn)行教學(xué)時(shí),通常會(huì)通過例題向?qū)W生講授知識(shí)點(diǎn),基于以上情況,我國(guó)小學(xué)數(shù)學(xué)教師可以將生活情境融入到例題中,從而使學(xué)生對(duì)例題題意更容易理解,并能夠在輕松愉快的氛圍中習(xí)得數(shù)學(xué)知識(shí)。例如,教師在對(duì)“比一比”的相關(guān)知識(shí)進(jìn)行講解時(shí),可以將全部的學(xué)生進(jìn)行分組,并讓每組的學(xué)生按照身高順序進(jìn)行排隊(duì)。通過這種學(xué)生在平時(shí)學(xué)習(xí)生活中熟悉的情境,教師可以將知識(shí)的內(nèi)容更好地進(jìn)行表述;再例如,教師在對(duì)“認(rèn)識(shí)物體和圖形”進(jìn)行講解時(shí),可以事先準(zhǔn)備正方體、長(zhǎng)方體、球以及圓柱體形狀的多種商品,然后讓學(xué)生進(jìn)行角色扮演,教師在對(duì)學(xué)生進(jìn)行分組后,讓學(xué)生扮演店員及顧客等角色,教師為學(xué)生下達(dá)命令。比如,教師要求學(xué)生購(gòu)買球類商品,學(xué)生便去挑選皮球、籃球等商品,教師要求學(xué)生購(gòu)買圓柱體類商品,學(xué)生便可以去挑選鉛筆等圓柱物體。教師運(yùn)用“購(gòu)買商品”的生活情境,可以使學(xué)生對(duì)各類物體圖形有更加清晰直觀的認(rèn)識(shí),并且對(duì)數(shù)學(xué)知識(shí)的應(yīng)用性有更多認(rèn)識(shí),充分調(diào)動(dòng)學(xué)生對(duì)小學(xué)數(shù)學(xué)知識(shí)學(xué)習(xí)的積極性;通過運(yùn)用生活情境,學(xué)生可以在教師的教學(xué)過程中充分發(fā)揮其主體作用,更多地參與到教學(xué)活動(dòng)中,提高將數(shù)學(xué)知識(shí)與生活建立聯(lián)系及在生活中應(yīng)用的能力。
數(shù)學(xué)建模優(yōu)秀論文(通用10篇)
在日復(fù)一日的學(xué)習(xí)、工作生活中,說到論文,大家肯定都不陌生吧,借助論文可以有效提高我們的寫作水平。你知道論文怎樣寫才規(guī)范嗎?以下是小編精心整理的數(shù)學(xué)建模優(yōu)秀論文,僅供參考,大家一起來看看吧。
數(shù)學(xué)建模優(yōu)秀論文 篇1
【摘要】首先闡述數(shù)學(xué)建模內(nèi)涵;其次分析數(shù)學(xué)建模與數(shù)學(xué)教學(xué)的關(guān)系;最后總結(jié)出提高數(shù)學(xué)教學(xué)效果的幾點(diǎn)思考。
【關(guān)鍵詞】數(shù)學(xué)建模;數(shù)學(xué)教學(xué);教學(xué)模式
什么是數(shù)學(xué)建模,為什么要把數(shù)學(xué)建模的思想運(yùn)用到數(shù)學(xué)課堂教學(xué)中去?經(jīng)過反復(fù)閱讀有關(guān)數(shù)學(xué)建模與數(shù)學(xué)教學(xué)的文章,仔細(xì)研修數(shù)十個(gè)高校的數(shù)學(xué)建模精品課程,數(shù)學(xué)建模優(yōu)秀教學(xué)案例等,筆者對(duì)數(shù)學(xué)教學(xué)與數(shù)學(xué)建模進(jìn)行初步探索,形成一定認(rèn)識(shí)。
一、數(shù)學(xué)建模
數(shù)學(xué)建模即運(yùn)用數(shù)學(xué)知識(shí)與數(shù)學(xué)思想,通過對(duì)實(shí)際問題數(shù)學(xué)化,建立數(shù)學(xué)模型,并運(yùn)用計(jì)算機(jī)計(jì)算出結(jié)果,對(duì)實(shí)際問題給出合理解決方案、建議等。系統(tǒng)的談數(shù)學(xué)建模需從以下三個(gè)方面談起。
1.數(shù)學(xué)建模課程。
“數(shù)學(xué)建!闭n程特色鮮明,以綜合門類為基礎(chǔ),重實(shí)踐,重應(yīng)用。旨在使學(xué)生打好數(shù)學(xué)基礎(chǔ),增強(qiáng)應(yīng)用數(shù)學(xué)意識(shí),提高實(shí)踐能力,建立數(shù)學(xué)模型解決實(shí)際問題。注重培養(yǎng)學(xué)生參與現(xiàn)代科研活動(dòng)主動(dòng)性與參與工程技術(shù)開發(fā)興趣,注重培養(yǎng)學(xué)生創(chuàng)新思維及創(chuàng)新能力等相關(guān)素質(zhì)。
2.數(shù)學(xué)建模競(jìng)賽。
1985年,美國(guó)工業(yè)與應(yīng)用數(shù)學(xué)學(xué)會(huì)發(fā)起的一項(xiàng)大學(xué)生競(jìng)賽活動(dòng)名為“數(shù)學(xué)建模競(jìng)賽”。旨在提高學(xué)生學(xué)習(xí)數(shù)學(xué)主動(dòng)性,提高學(xué)生運(yùn)用計(jì)算機(jī)技術(shù)與數(shù)學(xué)知識(shí)和數(shù)學(xué)思想解決實(shí)際問題綜合能力。學(xué)生參與這項(xiàng)活動(dòng)可以拓寬知識(shí)面,培養(yǎng)自己團(tuán)隊(duì)意識(shí)與創(chuàng)新精神。同時(shí)這項(xiàng)活動(dòng)推動(dòng)了數(shù)學(xué)教師與數(shù)學(xué)教學(xué)專家對(duì)數(shù)學(xué)體系、教學(xué)方式與教學(xué)知識(shí)重新認(rèn)識(shí)。1992年,教育部高教司和中國(guó)工業(yè)與數(shù)學(xué)學(xué)會(huì)創(chuàng)辦了“全國(guó)大學(xué)生數(shù)學(xué)建模競(jìng)賽”。截止20xx年10月已舉辦有21屆。大力推進(jìn)了我國(guó)高校數(shù)學(xué)教學(xué)改革進(jìn)程。
數(shù)學(xué)建模A優(yōu)秀論文
在現(xiàn)實(shí)的學(xué)習(xí)、工作中,大家總免不了要接觸或使用論文吧,論文一般由題名、作者、摘要、關(guān)鍵詞、正文、參考文獻(xiàn)和附錄等部分組成。一篇什么樣的論文才能稱為優(yōu)秀論文呢?以下是小編精心整理的數(shù)學(xué)建模A優(yōu)秀論文,僅供參考,大家一起來看看吧。
數(shù)學(xué)建模A優(yōu)秀論文 篇1
論文關(guān)鍵詞:數(shù)學(xué)建模數(shù)學(xué)應(yīng)用意識(shí)數(shù)學(xué)建模教學(xué)
論文摘要:為增強(qiáng)學(xué)生應(yīng)用數(shù)學(xué)的意識(shí),切實(shí)培養(yǎng)學(xué)生解決實(shí)際問題的能力,分析了高中數(shù)學(xué)建模的必要性,并通過對(duì)高中學(xué)生數(shù)學(xué)建模能力的調(diào)查分析,發(fā)現(xiàn)學(xué)生數(shù)學(xué)應(yīng)用及數(shù)學(xué)建模方面存在的問題,并針對(duì)問題提出了關(guān)于高中進(jìn)行數(shù)學(xué)建模教學(xué)的幾點(diǎn)意見。
數(shù)學(xué)是研究現(xiàn)實(shí)世界數(shù)量關(guān)系和空間形式的科學(xué),在它產(chǎn)生和發(fā)展的歷史長(zhǎng)河中,一直是和各種各樣的應(yīng)用問題緊密相關(guān)的。數(shù)學(xué)的特點(diǎn)不僅在于概念的抽象性、邏輯的嚴(yán)密性,結(jié)論的明確性和體系的完整性,而且在于它應(yīng)用的廣泛性,自進(jìn)入21世紀(jì)的知識(shí)經(jīng)濟(jì)時(shí)代以來,數(shù)學(xué)科學(xué)的地位發(fā)生了巨大的變化,它正在從國(guó)家經(jīng)濟(jì)和科技的后備走到了前沿。經(jīng)濟(jì)發(fā)展的全球化、計(jì)算機(jī)的迅猛發(fā)展,數(shù)學(xué)理論與方法的不斷擴(kuò)充使得數(shù)學(xué)已成為當(dāng)代高科技的一個(gè)重要組成部分,數(shù)學(xué)已成為一種能夠普遍實(shí)施的技術(shù)。培養(yǎng)學(xué)生應(yīng)用數(shù)學(xué)的意識(shí)和能力也成為數(shù)學(xué)教學(xué)的一個(gè)重要方面。
目前國(guó)際數(shù)學(xué)界普遍贊同通過開展數(shù)學(xué)建;顒(dòng)和在數(shù)學(xué)教學(xué)中推廣使用現(xiàn)代化技術(shù)來推動(dòng)數(shù)學(xué)教育改革。美國(guó)、德國(guó)、日本等發(fā)達(dá)國(guó)家普遍都十分重視數(shù)學(xué)建模教學(xué),把數(shù)學(xué)建模活動(dòng)從大學(xué)生向中學(xué)生轉(zhuǎn)移是近年國(guó)際數(shù)學(xué)教育發(fā)展的一種趨勢(shì)!拔覈(guó)的數(shù)學(xué)教育在很長(zhǎng)一段時(shí)間內(nèi)對(duì)于數(shù)學(xué)與實(shí)際、數(shù)學(xué)與其它學(xué)科的聯(lián)系未能給予充分的重視,因此,高中數(shù)學(xué)在數(shù)學(xué)應(yīng)用和聯(lián)系實(shí)際方面需要大力加強(qiáng)!蔽覈(guó)普通高中新的數(shù)學(xué)教學(xué)大綱中也明確提出要切實(shí)培養(yǎng)學(xué)生解決實(shí)際問題的能力,要求增強(qiáng)應(yīng)用數(shù)學(xué)的意識(shí),能初步運(yùn)用數(shù)學(xué)模型解決實(shí)際問題。這些要求不僅符合數(shù)學(xué)本身發(fā)展的需要,也是社會(huì)發(fā)展的需要。因此我們的數(shù)學(xué)教學(xué)不僅要使學(xué)生知道許多重要的數(shù)學(xué)概念、方法和結(jié)論,而且要提高學(xué)生的思維能力,培養(yǎng)學(xué)生自覺地運(yùn)用數(shù)學(xué)知識(shí)去處理和解決日常生活中所遇到的問題,從而形成良好的思維品質(zhì)。而數(shù)學(xué)建模通過"從實(shí)際情境中抽象出數(shù)學(xué)問題,求解數(shù)學(xué)模型,回到現(xiàn)實(shí)中進(jìn)行檢驗(yàn),必要時(shí)修改模型使之更切合實(shí)際"這一過程,促使學(xué)生圍繞實(shí)際問題查閱資料、收集信息、整理加工、獲取新知識(shí),從而拓寬了學(xué)生的知識(shí)面和能力。數(shù)學(xué)建模將各種知識(shí)綜合應(yīng)用于解決實(shí)際問題中,是培養(yǎng)和提高學(xué)生應(yīng)用所學(xué)知識(shí)分析問題、解決問題的能力的必備手段之一,是改善學(xué)生學(xué)習(xí)方式的突破口。因此有計(jì)劃地開展數(shù)學(xué)建;顒(dòng),將有效地培養(yǎng)學(xué)生的能力,提高學(xué)生的綜合素質(zhì)。
數(shù)學(xué)建模論文模板
在學(xué)習(xí)、工作生活中,大家都經(jīng)常看到論文的身影吧,論文對(duì)于所有教育工作者,對(duì)于人類整體認(rèn)識(shí)的提高有著重要的意義。相信寫論文是一個(gè)讓許多人都頭痛的問題,以下是小編為大家整理的數(shù)學(xué)建模論文模板,歡迎閱讀與收藏。
數(shù)學(xué)建模論文模板1
摘要:為了培養(yǎng)小學(xué)生良好的數(shù)學(xué)學(xué)習(xí)興趣,激發(fā)他們的數(shù)學(xué)潛能,教師需要采取必要的措施注重?cái)?shù)學(xué)建模思想的有效培養(yǎng),促進(jìn)學(xué)生的全面發(fā)展。在制定相關(guān)培養(yǎng)策略的過程中,教師應(yīng)充分考慮小學(xué)生的性格特點(diǎn),提高數(shù)學(xué)建模思想培養(yǎng)的有效性;诖耍恼聦牟煌姆矫鎸(duì)小學(xué)生數(shù)學(xué)建模思想的培養(yǎng)策略進(jìn)行初步的探討。
關(guān)鍵詞:小學(xué)生;數(shù)學(xué)建模思想;培養(yǎng)策略;性格特點(diǎn)
一、加強(qiáng)學(xué)生動(dòng)手實(shí)踐能力培養(yǎng),激發(fā)學(xué)生的建模興趣
作為小學(xué)數(shù)學(xué)教學(xué)中的重要組成部分,數(shù)學(xué)建模思想的滲透及相關(guān)教學(xué)活動(dòng)的順利開展,有利于提高復(fù)雜數(shù)學(xué)問題的處理效率,保持?jǐn)?shù)學(xué)課堂教學(xué)的高效性。要實(shí)現(xiàn)這樣的發(fā)展目標(biāo),增強(qiáng)小學(xué)生數(shù)學(xué)建模思想的實(shí)際培養(yǎng)效果,需要加強(qiáng)對(duì)學(xué)生動(dòng)手實(shí)踐能力的培養(yǎng),激發(fā)學(xué)生的更高興趣。建模的過程涉及問題表述、求解、必要解釋及有效驗(yàn)證,在這四個(gè)環(huán)節(jié)中,可能會(huì)存在一定的問題,影響著數(shù)學(xué)教學(xué)計(jì)劃的實(shí)施。因此,教師需要利用學(xué)生動(dòng)手實(shí)踐能力的作用,實(shí)現(xiàn)數(shù)學(xué)建模思想的有效培養(yǎng),促使小學(xué)生能夠在數(shù)學(xué)建模過程中享受到更多的快樂。比如,在講解“認(rèn)識(shí)角”知識(shí)的過程中,某些學(xué)生認(rèn)為邊越長(zhǎng)角度也越大。為了使學(xué)生能夠?qū)ζ渲械闹R(shí)點(diǎn)有更加正確而全面的認(rèn)識(shí),教師可以通過在黑板上設(shè)置一些能夠活動(dòng)的三角板,讓學(xué)生親自動(dòng)手操作,以此得出角與邊長(zhǎng)的正確關(guān)系,為后續(xù)教學(xué)計(jì)劃的實(shí)施打下堅(jiān)實(shí)的基礎(chǔ)。通過這種教學(xué)方法的合理運(yùn)用,可以激發(fā)出學(xué)生們?cè)跀?shù)學(xué)建模學(xué)習(xí)中的更高興趣,豐富他們的想象力,從而使他們對(duì)數(shù)學(xué)建模思想有一定的了解,在未來學(xué)習(xí)過程中能夠保持良好的數(shù)學(xué)建模能力。
數(shù)學(xué)建模論文(通用10篇)
要使學(xué)生學(xué)會(huì)提出問題并明確探究方向,能夠運(yùn)用已有的知識(shí)進(jìn)行交流,并將實(shí)際問題抽象為數(shù)學(xué)問題,就必須建立數(shù)學(xué)模型,從而形成比較完整的數(shù)學(xué)知識(shí)結(jié)構(gòu)。以下是小編為您搜集整理的數(shù)學(xué)建模論文范文,歡迎閱讀借鑒。
數(shù)學(xué)建模論文 篇1
數(shù)學(xué)建模隨著人類的進(jìn)步,科技的發(fā)展和社會(huì)的日趨數(shù)字化,應(yīng)用領(lǐng)域越來越廣泛,人們身邊的數(shù)學(xué)內(nèi)容越來越豐富。強(qiáng)調(diào)數(shù)學(xué)應(yīng)用及培養(yǎng)應(yīng)用數(shù)學(xué)意識(shí)對(duì)推動(dòng)素質(zhì)教育的實(shí)施意義十分巨大。數(shù)學(xué)建模在數(shù)學(xué)教育中的地位被提到了新的高度,通過數(shù)學(xué)建模解數(shù)學(xué)應(yīng)用題,提高學(xué)生的綜合素質(zhì)。本文將結(jié)合數(shù)學(xué)應(yīng)用題的特點(diǎn),把怎樣利用數(shù)學(xué)建模解好數(shù)學(xué)應(yīng)用問題進(jìn)行剖析,希望得到同仁的幫助和指正。
一、數(shù)學(xué)應(yīng)用題的特點(diǎn)
我們常把來源于客觀世界的實(shí)際,具有實(shí)際意義或?qū)嶋H背景,要通過數(shù)學(xué)建模的方法將問題轉(zhuǎn)化為數(shù)學(xué)形式表示,從而獲得解決的一類數(shù)學(xué)問題叫做數(shù)學(xué)應(yīng)用題。數(shù)學(xué)應(yīng)用題具有如下特點(diǎn):
第一、數(shù)學(xué)應(yīng)用題的本身具有實(shí)際意義或?qū)嶋H背景。這里的實(shí)際是指生產(chǎn)實(shí)際、社會(huì)實(shí)際、生活實(shí)際等現(xiàn)實(shí)世界的各個(gè)方面的實(shí)際。如與課本知識(shí)密切聯(lián)系的源于實(shí)際生活的應(yīng)用題;與模向?qū)W科知識(shí)網(wǎng)絡(luò)交匯點(diǎn)有聯(lián)系的應(yīng)用題;與現(xiàn)代科技發(fā)展、社會(huì)市場(chǎng)經(jīng)濟(jì)、環(huán)境保護(hù)、實(shí)事政治等有關(guān)的應(yīng)用題等。
第二、數(shù)學(xué)應(yīng)用題的求解需要采用數(shù)學(xué)建模的方法,使所求問題數(shù)學(xué)化,即將問題轉(zhuǎn)化成數(shù)學(xué)形式來表示后再求解。
第三、數(shù)學(xué)應(yīng)用題涉及的知識(shí)點(diǎn)多。是對(duì)綜合運(yùn)用數(shù)學(xué)知識(shí)和方法解決實(shí)際問題能力的檢驗(yàn),考查的是學(xué)生的綜合能力,涉及的知識(shí)點(diǎn)一般在三個(gè)以上,如果某一知識(shí)點(diǎn)掌握的不過關(guān),很難將問題正確解答。
數(shù)學(xué)建模論文(通用7篇)
數(shù)學(xué)建模論文屬于科技論文的范疇。數(shù)學(xué)建模論文的寫作過程,就是將競(jìng)賽小組的全部工作經(jīng)過條理化、邏輯化、嚴(yán)密化,按一定格式完整地表述出來的過程。建模論文與建模的活動(dòng)程序密切相關(guān),但不是活動(dòng)記錄,有嚴(yán)格的格式要求。以下是數(shù)學(xué)建模論文,歡迎閱讀。
數(shù)學(xué)建模論文 篇1
1摘要
“摘要”是對(duì)整篇論文的縮寫,建立在通讀全文、理解全文的基礎(chǔ)之上。評(píng)審專家評(píng)閱論文時(shí),總是先看摘要,摘要給專家留下第一印象,是評(píng)獎(jiǎng)的敲門磚!罢卑: 問題背景,要達(dá)到什么目標(biāo),解決問題的思路、方法和步驟,模型的主要內(nèi)容、算法和結(jié)論,模型的特色。好的“摘要”能很快吸引評(píng)審專家的注意力,它建立在多次修改、反復(fù)推敲的基礎(chǔ)之上,具有統(tǒng)攬全文、層次分明、重點(diǎn)突出、文筆流暢的特點(diǎn)。
2問題提出
“問題提出”也可寫作“問題重述”。是將競(jìng)賽試題所給定的問題背景和解題要求用論文書寫者自己的語言重新表述。在美國(guó)的數(shù)學(xué)建模競(jìng)賽中,這一部分稱為 Background或者 Introduction。
3模型假設(shè)
任何問題的求解都有它的背景和適用范圍,建模試題來自于現(xiàn)實(shí)問題,同樣受到各種外在因素的約束。“模型假設(shè)”就是界定一個(gè)范圍,或給出幾個(gè)約束條件,一使得問題的解決過程不至于太復(fù)雜,二使得其他人在使用該模型時(shí)知曉它的適用范圍。“模型假設(shè)”不是憑空臆造的,是在建立模型的過程中挖掘、提煉出來的。
4符號(hào)說明
數(shù)學(xué)符號(hào)是數(shù)學(xué)語言的基本元素,具有抽象性、準(zhǔn)確性、簡(jiǎn)潔性的特點(diǎn)。數(shù)學(xué)模型由數(shù)學(xué)符號(hào)組成,模型的求解通過符號(hào)的運(yùn)算來完成?梢,在建立數(shù)學(xué)模型時(shí)根據(jù)需要隨時(shí)引入必要的數(shù)學(xué)符號(hào)是多么重要的事情。根據(jù)競(jìng)賽要求,在建立模型的過程中所引入的數(shù)學(xué)符號(hào)要在本模塊給出說明,最好的說明方式是列一個(gè)表格。
數(shù)學(xué)建模論文格式字體
在平時(shí)的學(xué)習(xí)、工作中,大家肯定對(duì)論文都不陌生吧,論文一般由題名、作者、摘要、關(guān)鍵詞、正文、參考文獻(xiàn)和附錄等部分組成。還是對(duì)論文一籌莫展嗎?下面是小編幫大家整理的數(shù)學(xué)建模論文格式字體,歡迎大家分享。
數(shù)學(xué)建模論文格式字體
●題名。字體為常規(guī),黑體,二號(hào)。題名一般不超過20個(gè)漢字,必要時(shí)可加副標(biāo)題。
●摘要。文稿必須有不超過300字的內(nèi)容摘要,摘要內(nèi)容字體為常規(guī),仿宋,五號(hào)。摘要應(yīng)具備獨(dú)立性和自含性,應(yīng)是文章主要觀點(diǎn)的濃縮。摘要前加“[摘要]”作標(biāo)識(shí),字體為加粗,黑體,五號(hào)。
●正文。用五號(hào)宋體,1.5倍間距。文稿以10000字以下為宜。
●文內(nèi)標(biāo)題。力求簡(jiǎn)短、明確,題末不用標(biāo)點(diǎn)符號(hào)(問號(hào)、嘆號(hào)、省略號(hào)除外)。層次不宜超過5級(jí)。第1級(jí)標(biāo)題字體為常規(guī),楷體,小四;第2級(jí)標(biāo)題字體為加粗,宋體,五號(hào);次級(jí)遞減。層次序號(hào)可采用一.(一).1.(1).1),不宜用①,以與注釋號(hào)區(qū)別。文內(nèi)內(nèi)容字體為常規(guī),宋體,五號(hào)。
●數(shù)字使用。數(shù)字用法及計(jì)量單位按GBT15835—1995《出版物上數(shù)字用法的規(guī)定》和1984年12月27日國(guó)務(wù)院發(fā)布的《中華人民共和國(guó)法定計(jì)量單位》執(zhí)行。4位以上數(shù)字采用3位分節(jié)法。5位以上數(shù)字尾數(shù)零多的,可以“萬”、“億”作單位。標(biāo)點(diǎn)符號(hào)按GBT15835—1995《標(biāo)點(diǎn)符號(hào)用法》執(zhí)行。
●附表與插圖。附表應(yīng)有表序、表題、一般采用三線表;插圖應(yīng)有圖序和圖題。序號(hào)用阿拉伯?dāng)?shù)字標(biāo)注。常規(guī),楷體,五號(hào)。圖序和圖題的字體為加粗,宋體,五號(hào)。
初中數(shù)學(xué)建模教學(xué)探究論文
在學(xué)習(xí)和工作中,大家對(duì)論文都再熟悉不過了吧,借助論文可以有效訓(xùn)練我們運(yùn)用理論和技能解決實(shí)際問題的的能力。一篇什么樣的論文才能稱為優(yōu)秀論文呢?以下是小編收集整理的初中數(shù)學(xué)建模教學(xué)探究論文,歡迎閱讀與收藏。
初中數(shù)學(xué)建模教學(xué)探究論文 篇1
摘要:
《全日制義務(wù)教育數(shù)學(xué)課程(實(shí)驗(yàn)稿)》中關(guān)于課程目標(biāo)中指出:“數(shù)學(xué)建模為我們提供了將數(shù)學(xué)與生活實(shí)際相聯(lián)系的機(jī)會(huì),提供了運(yùn)用數(shù)學(xué)的機(jī)會(huì),數(shù)學(xué)建模的過程,就是將數(shù)學(xué)理論知識(shí)應(yīng)用于實(shí)際問題的過程!保皢栴}情景—建立模型—解決與應(yīng)用”可以成為課程內(nèi)容的呈現(xiàn)以及學(xué)生學(xué)習(xí)過程的主要模式。
關(guān)鍵詞:
數(shù)學(xué);模型;建模
數(shù)學(xué)模型:對(duì)于現(xiàn)實(shí)中的原型,為了某個(gè)特定目的,作出一些必要的簡(jiǎn)化和假設(shè),運(yùn)用適當(dāng)?shù)臄?shù)學(xué)工具得到一個(gè)數(shù)學(xué)結(jié)構(gòu)。也可以說,數(shù)學(xué)建模是利用數(shù)學(xué)語言(符號(hào)、式子與圖像)模擬現(xiàn)實(shí)的模型。把現(xiàn)實(shí)模型抽象、簡(jiǎn)化為某種數(shù)學(xué)結(jié)構(gòu)是數(shù)學(xué)模型的基本特征。它或者能解釋特定現(xiàn)象的現(xiàn)實(shí)狀態(tài),或者能預(yù)測(cè)到對(duì)象的未來狀況,或者能提供處理對(duì)象的最優(yōu)決策或控制。
數(shù)學(xué)建模:把現(xiàn)實(shí)世界中的實(shí)際問題加以提煉,抽象為數(shù)學(xué)模型,求出模型的解,驗(yàn)證模型的合理性,并用該數(shù)學(xué)模型所提供的解答來解釋現(xiàn)實(shí)問題,我們把數(shù)學(xué)知識(shí)的這一應(yīng)用過程稱為數(shù)學(xué)建模。
一、初中數(shù)學(xué)建模教學(xué)的意義
1、激發(fā)學(xué)生的學(xué)習(xí)興趣
數(shù)學(xué)建模教學(xué)以學(xué)生為中心、以問題為主線、以培養(yǎng)皮能力為目標(biāo)來組織教學(xué)工作。數(shù)學(xué)建模以學(xué)生為主,教師利用一些事先設(shè)計(jì)和問題啟發(fā),引導(dǎo)學(xué)生主動(dòng)查閱文獻(xiàn)資料和學(xué)習(xí)新知識(shí),鼓勵(lì)學(xué)生積極展開討論,培養(yǎng)學(xué)生主動(dòng)探索,努力進(jìn)取的學(xué)風(fēng),培養(yǎng)學(xué)生初步研究的能力,培養(yǎng)學(xué)生團(tuán)結(jié)協(xié)作的精神、形成一個(gè)生動(dòng)活潑的環(huán)境和氣氛,教學(xué)過程的重點(diǎn)創(chuàng)造一個(gè)環(huán)境去誘導(dǎo)學(xué)生的學(xué)習(xí)的欲望、培養(yǎng)他們的自學(xué)能力,增強(qiáng)他們的數(shù)學(xué)素質(zhì)和創(chuàng)新知識(shí)的能力高他們數(shù)學(xué)素質(zhì),強(qiáng)調(diào)的是獲取新知識(shí)的能力,是解決問題的過程,而不是知識(shí)與結(jié)果。
數(shù)學(xué)建模論文格式模板
在各領(lǐng)域中,大家總免不了要接觸或使用論文吧,通過論文寫作可以培養(yǎng)我們的科學(xué)研究能力。相信很多朋友都對(duì)寫論文感到非常苦惱吧,下面是小編精心整理的數(shù)學(xué)建模論文格式模板,供大家參考借鑒,希望可以幫助到有需要的朋友。
數(shù)學(xué)建模論文格式 篇1
論文標(biāo)題:xxxxxxx
摘要
摘要是論文內(nèi)容不加注釋和評(píng)論的簡(jiǎn)短陳述,其作用是使讀者不閱讀論文全文即能獲得必要的信息。
一般說來,摘要應(yīng)包含以下五個(gè)方面的內(nèi)容:
①研究的主要問題;
、诮⒌氖裁茨P;
③用的什么求解方法;
、苤饕Y(jié)果(簡(jiǎn)單、主要的);
⑤自我評(píng)價(jià)和推廣。
摘要中不要有關(guān)鍵字和數(shù)學(xué)表達(dá)式。
數(shù)學(xué)建模競(jìng)賽章程規(guī)定,對(duì)競(jìng)賽論文的評(píng)價(jià)應(yīng)以:
①假設(shè)的合理性
、诮5膭(chuàng)造性
③結(jié)果的正確性
、芪淖直硎龅那逦詾橹饕獦(biāo)準(zhǔn)。
所以論文中應(yīng)努力反映出這些特點(diǎn)。
注意:整個(gè)版式要完全按照《全國(guó)大學(xué)生數(shù)學(xué)建模競(jìng)賽論文格式規(guī)范》的要求書寫,否則無法送全國(guó)評(píng)獎(jiǎng)。
一、問題的重述
數(shù)學(xué)建模競(jìng)賽要求解決給定的問題,所以一般應(yīng)以“問題的重述”開始。
此部分的目的是要吸引讀者讀下去,所以文字不可冗長(zhǎng),內(nèi)容選擇不要過于分散、瑣碎,措辭要精練。
這部分的內(nèi)容是將原問題進(jìn)行整理,將已知和問題明確化即可。
注意:在寫這部分的內(nèi)容時(shí),絕對(duì)不可照抄原題!
應(yīng)為:在仔細(xì)理解了問題的基礎(chǔ)上,用自己的語言重新將問題描述一篇。應(yīng)盡量簡(jiǎn)短,沒有必要像原題一樣面面俱到。
數(shù)學(xué)建模專業(yè)畢業(yè)論文排版格式
數(shù)學(xué)建模就是通過計(jì)算得到的結(jié)果來解釋實(shí)際問題,并接受實(shí)際的檢驗(yàn),來建立數(shù)學(xué)模型的全過程。如下是小編為大家整理的數(shù)學(xué)建模專業(yè)畢業(yè)論文排版格式,希望對(duì)大家有幫助!
數(shù)學(xué)建模專業(yè)畢業(yè)論文排版格式
一、 寫好數(shù)模論文的重要性
1、 數(shù)模論文是評(píng)定參與者的成績(jī)好壞、高低、獲獎(jiǎng)級(jí)別的惟一依據(jù)。
2、 數(shù)模論文是培訓(xùn)(或競(jìng)賽)活動(dòng)的最終成績(jī)的書面形式。
3、 寫好論文的訓(xùn)練,是科技論文寫作的一種基本訓(xùn)練。
二、數(shù)模論文的基本內(nèi)容
1、評(píng)閱原則:
假設(shè)的合理性;
建模的創(chuàng)造性;
結(jié)果的合理性;
表述的清晰程度
2、數(shù)模論文的結(jié)構(gòu)
摘要
1、問題的提出:綜述問題的內(nèi)容及意義
2、模型的假設(shè):寫出問題的合理假設(shè),符號(hào)的說明
3、模型的建立:詳細(xì)敘述模型、變量、參數(shù)代表的意義和滿足的條件,進(jìn)行問題分析,公式推導(dǎo),建立基本模型,深化模型,最終或簡(jiǎn)化模型等
4、模型的求解:求解及算法的主要步驟,使用的數(shù)學(xué)軟件等
5、模型檢驗(yàn):結(jié)果表示、分析與檢驗(yàn),誤差分析等
6、模型評(píng)價(jià):本模型的特點(diǎn),優(yōu)缺點(diǎn),改進(jìn)方法
7、參考文獻(xiàn):限公開發(fā)表文獻(xiàn),指明出處
8、 附錄:計(jì)算框圖、計(jì)算程序,詳細(xì)圖表
三、需要重視的問題
摘要
表述:準(zhǔn)確、簡(jiǎn)明、條理清晰、合乎語法。
字?jǐn)?shù)300—500字,包括模型的主要特點(diǎn)、建模方法和主要結(jié)果?梢杂泄剑荒苡袌D表
簡(jiǎn)單地說,摘要應(yīng)體現(xiàn):用了什么方法,解決了什么問題,得到了那些主要結(jié)論。還可作那些推廣。