- 中考數(shù)學(xué)復(fù)習(xí)平面幾何的60個(gè)定理 推薦度:
- 相關(guān)推薦
2016中考數(shù)學(xué)平面幾何定理30條
2016年中考將近,大家的備考情況如何呢?下面是YJBYS小編為大家搜索整理的關(guān)于中考數(shù)學(xué)平面幾何定理30條,歡迎參考學(xué)習(xí),希望對(duì)大家備考有所幫助!想了解更多相關(guān)信息請(qǐng)持續(xù)關(guān)注我們應(yīng)屆畢業(yè)生培訓(xùn)網(wǎng)!
1、勾股定理(畢達(dá)哥拉斯定理)。
2、射影定理(歐幾里得定理)。
3、三角形的三條中線交于一點(diǎn),并且,各中線被這個(gè)點(diǎn)分成2:1的兩部分。
4、四邊形兩邊中心的連線的兩條對(duì)角線中心的連線交于一點(diǎn)。
5、間隔的連接六邊形的邊的中心所作出的兩個(gè)三角形的重心是重合的。
6、三角形各邊的垂直一平分線交于一點(diǎn)。
7、三角形的三條高線交于一點(diǎn)
8、設(shè)三角形ABC的外心為O,垂心為H,從O向BC邊引垂線,設(shè)垂足為L(zhǎng),則AH=2OL
9、三角形的外心,垂心,重心在同一條直線(歐拉線)上。
10、(九點(diǎn)圓或歐拉圓或費(fèi)爾巴赫?qǐng)A)三角形中,三邊中心、從各頂點(diǎn)向其對(duì)邊所引垂線的垂足,以及垂心與各頂點(diǎn)連線的中點(diǎn),這九個(gè)點(diǎn)在同一個(gè)圓上。
11、歐拉定理:三角形的外心、重心、九點(diǎn)圓圓心、垂心依次位于同一直線(歐拉線)上。
12、庫(kù)立奇*大上定理:(圓內(nèi)接四邊形的九點(diǎn)圓)圓周上有四點(diǎn),過(guò)其中任三點(diǎn)作三角形,這四個(gè)三角形的九點(diǎn)圓圓心都在同一圓周上,我們把過(guò)這四個(gè)九點(diǎn)圓圓心的圓叫做圓內(nèi)接四邊形的九點(diǎn)圓。
13、(內(nèi)心)三角形的三條內(nèi)角平分線交于一點(diǎn),內(nèi)切圓的半徑公式:r=(s-a)(s-b)(s-c)s,s為三角形周長(zhǎng)的一半。
14、(旁心)三角形的一個(gè)內(nèi)角平分線和另外兩個(gè)頂點(diǎn)處的外角平分線交于一點(diǎn)。
15、中線定理:(巴布斯定理)設(shè)三角形ABC的邊BC的中點(diǎn)為P,則有AB2+AC2=2(AP2+BP2)。
16、斯圖爾特定理:P將三角形ABC的邊BC內(nèi)分成m:n,則有n×AB2+m×AC2=(m+n)AP2+mnm+nBC2。
17、波羅摩及多定理:圓內(nèi)接四邊形ABCD的對(duì)角線互相垂直時(shí),連接AB中點(diǎn)M和對(duì)角線交點(diǎn)E的直線垂直于CD。
18、阿波羅尼斯定理:到兩定點(diǎn)A、B的距離之比為定比m:n(值不為1)的點(diǎn)P,位于將線段AB分成m:n的內(nèi)分點(diǎn)C和外分點(diǎn)D為直徑兩端點(diǎn)的定圓周上。
19、托勒密定理:設(shè)四邊形ABCD內(nèi)接于圓,則有AB×CD+AD×BC=AC×BD。
20、以任意三角形ABC的邊BC、CA、AB為底邊,分別向外作底角都是30度的等腰△BDC、△CEA、△AFB,則△DEF是正三角形。
21、愛(ài)爾可斯定理1:若△ABC和△DEF都是正三角形,則由線段AD、BE、CF的中心構(gòu)成的三角形也是正三角形。
22、愛(ài)爾可斯定理2:若△ABC、△DEF、△GHI都是正三角形,則由三角形△ADG、△BEH、△CFI的重心構(gòu)成的三角形是正三角形。
23、梅涅勞斯定理:設(shè)△ABC的三邊BC、CA、AB或其延長(zhǎng)線和一條不經(jīng)過(guò)它們?nèi)我豁旤c(diǎn)的直線的交點(diǎn)分別為P、Q、R則有BPPC×CQQA×ARRB=1。
24、梅涅勞斯定理的逆定理。
25、梅涅勞斯定理的應(yīng)用定理1:設(shè)△ABC的∠A的外角平分線交邊CA于Q、∠C的平分線交邊AB于R,、∠B的平分線交邊CA于Q,則P、Q、R三點(diǎn)共線。
26、梅涅勞斯定理的應(yīng)用定理2:過(guò)任意△ABC的三個(gè)頂點(diǎn)A、B、C作它的外接圓的切線,分別和BC、CA、AB的延長(zhǎng)線交于點(diǎn)P、Q、R,則P、Q、R三點(diǎn)共線。
27、塞瓦定理:設(shè)△ABC的三個(gè)頂點(diǎn)A、B、C的不在三角形的邊或它們的延長(zhǎng)線上的一點(diǎn)S連接面成的三條直線,分別與邊BC、CA、AB或它們的延長(zhǎng)線交于點(diǎn)P、Q、R,則BPPC×CQQA×ARRB()=1。
28、塞瓦定理的應(yīng)用定理:設(shè)平行于△ABC的邊BC的直線與兩邊AB、AC的交點(diǎn)分別是D、E,又設(shè)BE和CD交于S,則AS一定過(guò)邊BC的中心M。
29、塞瓦定理的逆定理。
30、塞瓦定理的逆定理的應(yīng)用定理1:三角形的三條中線交于一點(diǎn)。
【中考數(shù)學(xué)平面幾何定理】相關(guān)文章:
2016年中考數(shù)學(xué)復(fù)習(xí)平面幾何的60個(gè)定理01-23
勾股定理的逆定理教學(xué)設(shè)計(jì)08-03
2016中考物理常用定理定律匯總02-24
勾股定理公式10-18
2017小升初數(shù)學(xué)剩余定理練習(xí)題及答案02-24
中考數(shù)學(xué)復(fù)習(xí)的策略02-17