- 初中數(shù)學(xué)知識點中考總復(fù)習(xí)總結(jié)歸納 推薦度:
- 相關(guān)推薦
初中數(shù)學(xué)中考總復(fù)習(xí)知識歸納
標準差
標準差(Standard Deviation),在概率統(tǒng)計中最常使用作為統(tǒng)計分布程度(statistical dispersion)上的測量。標準差定義是總體各單位標志值與其平均數(shù)離差平方的算術(shù)平均數(shù)的平方根。它反映組內(nèi)個體間的離散程度。測量到分布程度的結(jié)果,原則上具有兩種性質(zhì):
為非負數(shù)值, 與測量資料具有相同單位。一個總量的標準差或一個隨機變量的標準差,及一個子集合樣品數(shù)的標準差之間,有所差別。
標準計算公式
假設(shè)有一組數(shù)值X1,X2,X3,......XN(皆為實數(shù)),其平均值為μ,
標準差也被稱為標準偏差,或者實驗標準差,
簡單來說,標準差是一組數(shù)據(jù)平均值分散程度的一種度量。一個較大的標準差,代表大部分數(shù)值和其平均值之間差異較大;一個較小的標準差,代表這些數(shù)值較接近平均值。
例如,兩組數(shù)的集合 {0,5,9,14} 和 {5,6,8,9} 其平均值都是 7 ,但第二個集合具有較小的標準差。
標準差可以當(dāng)作不確定性的一種測量。例如在物理科學(xué)中,做重復(fù)性測量時,測量數(shù)值集合的標準差代表這些測量的精確度。當(dāng)要決定測量值是否符合預(yù)測值,測量值的標準差占有決定性重要角色:如果測量平均值與預(yù)測值相差太遠(同時與標準差數(shù)值做比較),則認為測量值與預(yù)測值互相矛盾。這很容易理解,因為如果測量值都落在一定數(shù)值范圍之外,可以合理推論預(yù)測值是否正確。
標準差應(yīng)用于投資上,可作為量度回報穩(wěn)定性的指標。標準差數(shù)值越大,代表回報遠離過去平均數(shù)值,回報較不穩(wěn)定故風(fēng)險越高。相反,標準差數(shù)值越細,代表回報較為穩(wěn)定,風(fēng)險亦較小。
例如,A、B兩組各有6位學(xué)生參加同一次語文測驗,A組的分數(shù)為95、85、75、65、55、45,B組的分數(shù)為73、72、71、69、68、67。這兩組的平均數(shù)都是70,但A組的標準差為17.078分,B組的標準差為2.16分(此數(shù)據(jù)是在R統(tǒng)計軟件中運行獲得),說明A組學(xué)生之間的差距要比B組學(xué)生之間的差距大得多。
如是總體,標準差公式根號內(nèi)除以n 如是樣本,標準差公式根號內(nèi)除以(n-1) 因為我們大量接觸的是樣本,所以普遍使用根號內(nèi)除以(n-1)
公式意義
所有數(shù)減去其平均值的平方和,所得結(jié)果除以該組數(shù)之個數(shù)(或個數(shù)減一,即變異數(shù)),再把所得值開根號,所得之?dāng)?shù)就是這組數(shù)據(jù)的標準差。
深藍區(qū)域是距平均值小于一個標準差之內(nèi)的數(shù)值范圍。在正態(tài)分布中,此范圍所占比率為全部數(shù)值之 68%。根據(jù)正態(tài)分布,兩個標準差之內(nèi)(深藍,藍)的比率合起來為 95%。根據(jù)正態(tài)分布,三個標準差之內(nèi)(深藍,藍,淺藍)的比率合起來為 99%。
平面直角坐標系
在平面內(nèi)畫兩條互相垂直、原點重合的數(shù)軸,組成平面直角坐標系。
水平的數(shù)軸稱為x軸或橫軸,豎直的數(shù)軸稱為y軸或縱軸,兩坐標軸的交點為平面直角坐標系的原點。
平面直角坐標系的要素:①在同一平面②兩條數(shù)軸③互相垂直④原點重合
三個規(guī)定:
、僬较虻囊(guī)定橫軸取向右為正方向,縱軸取向上為正方向
、趩挝婚L度的規(guī)定;一般情況,橫軸、縱軸單位長度相同;實際有時也可不同,但同一數(shù)軸上必須相同。
、巯笙薜囊(guī)定:右上為第一象限、左上為第二象限、左下為第三象限、右下為第四象限。
平面直角坐標系的構(gòu)成
在同一個平面上互相垂直且有公共原點的兩條數(shù)軸構(gòu)成平面直角坐標系,簡稱為直角坐標系。通常,兩條數(shù)軸分別置于水平位置與鉛直位置,取向右與向上的方向分別為兩條數(shù)軸的正方向。水平的數(shù)軸叫做X軸或橫軸,鉛直的數(shù)軸叫做Y軸或縱軸,X軸或Y軸統(tǒng)稱為坐標軸,它們的公共原點O稱為直角坐標系的原點。
點的坐標的性質(zhì)
建立了平面直角坐標系后,對于坐標系平面內(nèi)的任何一點,我們可以確定它的坐標。反過來,對于任何一個坐標,我們可以在坐標平面內(nèi)確定它所表示的一個點。
對于平面內(nèi)任意一點C,過點C分別向X軸、Y軸作垂線,垂足在X軸、Y軸上的對應(yīng)點a,b分別叫做點C的橫坐標、縱坐標,有序?qū)崝?shù)對(a,b)叫做點C的坐標。
一個點在不同的象限或坐標軸上,點的坐標不一樣。
因式分解的一般步驟
如果多項式有公因式就先提公因式,沒有公因式的多項式就考慮運用公式法;是四項或四項以上的多項式,
通常采用分組分解法,最后運用十字相乘法分解因式。因此,可以概括為:“一提”、“二套”、“三分組”、“四十字”。
注意:因式分解一定要分解到每一個因式都不能再分解為止,否則就是不完全的因式分解,若題目沒有明確指出在哪個范圍內(nèi)因式分解,應(yīng)該是指在有理數(shù)范圍內(nèi)因式分解,因此分解因式的結(jié)果,必須是幾個整式的積的形式。
因式分解
因式分解定義:把一個多項式化成幾個整式的積的形式的變形叫把這個多項式因式分解。
因式分解要素:①結(jié)果必須是整式②結(jié)果必須是積的形式③結(jié)果是等式④
因式分解與整式乘法的關(guān)系:m(a+b+c)
公因式:一個多項式每項都含有的公共的因式,叫做這個多項式各項的公因式。
公因式確定方法:①系數(shù)是整數(shù)時取各項最大公約數(shù)。②相同字母取最低次冪③系數(shù)最大公約數(shù)與相同字母取最低次冪的積就是這個多項式各項的公因式。
提取公因式步驟:
、俅_定公因式。②確定商式③公因式與商式寫成積的形式。
分解因式注意;
①不準丟字母
、诓粶蕘G常數(shù)項注意查項數(shù)
、垭p重括號化成單括號
④結(jié)果按數(shù)單字母單項式多項式順序排列
、菹嗤蚴綄懗蓛绲男问
⑥首項負號放括號外
、呃ㄌ杻(nèi)同類項合并。
【初中數(shù)學(xué)中考總復(fù)習(xí)知識歸納】相關(guān)文章:
初中數(shù)學(xué)知識點中考總復(fù)習(xí)總結(jié)歸納05-26
中考數(shù)學(xué)總復(fù)習(xí)的反思02-12
小升初數(shù)學(xué)知識點復(fù)習(xí)歸納01-26
2017小升初數(shù)學(xué)總復(fù)習(xí)資料歸納01-23
初中《數(shù)學(xué)》中考復(fù)習(xí)01-22
中考語文總復(fù)習(xí)教案01-03
小升初數(shù)學(xué)總復(fù)習(xí)09-25
中考物理考試知識考點歸納01-24