亚洲国产日韩欧美在线a乱码,国产精品路线1路线2路线,亚洲视频一区,精品国产自,www狠狠,国产情侣激情在线视频免费看,亚洲成年网站在线观看

小學典型數(shù)學應用題及其解析

時間:2023-04-03 05:21:33 小學知識 我要投稿
  • 相關推薦

小學典型數(shù)學應用題及其解析

  1. 一個四位數(shù)除以119余96,除以120余80.求這四位數(shù).

小學典型數(shù)學應用題及其解析

  解:用盈虧問題的思想來解答。

  商是(96-80)÷(120-119)=16,所以被除數(shù)是120×16+80=2000。

  2. 有四個不同的自然數(shù),其中任意兩個數(shù)之和是2的倍數(shù),任意三個數(shù)的和是3的倍數(shù),求滿足條件的最小的四個自然數(shù).

  解:任意兩個數(shù)之和是2的倍數(shù),說明這些數(shù)全部是偶數(shù)或者全部是奇數(shù)。

  任意三個數(shù)的和是3的倍數(shù),說明這些數(shù)除以3的余數(shù)相同。

  要滿足條件的最小自然數(shù),因為0是自然數(shù)了。所以我認為結(jié)果是0、6、12、18。

  3. 在一環(huán)形跑道上,甲從A點,乙從B點同時出發(fā)反向而行,6分鐘后兩人相遇,再過4分鐘甲到達B點,又過8分鐘兩人再次相遇.甲、乙環(huán)行一周各需要多少分鐘?

  解:甲乙合行一圈需要8+4=12分鐘。乙行6分鐘的路程,甲只需4分鐘。

  所以乙行的12分鐘,甲需要12÷6×4=8分鐘,所以甲行一圈需要8+12=20分鐘。乙行一圈需要20÷4×6=30分鐘。

  4. 甲、乙沿同一公路相向而行,甲的速度是乙的1.5倍.已知甲上午8點經(jīng)過郵局,乙上午10點經(jīng)過郵局,問甲、乙在中途何時相遇?

  解:我們把乙行1小時的路程看作1份,

  那么上午8時,甲乙相距10-8=2份。

  所以相遇時,乙行了2÷(1+1.5)=0.8份,0.8×60=48分鐘,

  所以在8點48分相遇。

  5. 甲、乙兩人同時從山腳開始爬山,到達山頂后就立即下山.他們兩人下山的速度都是各自上山速度的2倍.甲到山頂時,乙距山頂還有400米,甲回到山腳時,乙剛好下到半山腰.求從山頂?shù)缴侥_的距離.

  解:假設甲乙可以繼續(xù)上行,那么甲乙的速度比是(1+1÷2):(1+1/2÷2)=6:5

  所以當甲行到山頂時,乙就行了5/6,所以從山頂?shù)缴侥_的距離是400÷(1-5/6)=2400米。

  6. 一輛公共汽車載了一些乘客從起點出發(fā),在第一站下車的乘客是車上總數(shù)(含一名司機和兩名售票員)的1/7,第二站下車的乘客是車上總?cè)藬?shù)的1/6,.......第六站下車的乘客是車上總?cè)藬?shù)的1/2,再開車是車上就剩下1名乘客了.已知途中沒有人上車,問從起點出發(fā)時,車上有多少名乘客?

  解: 最后剩下1+1+2=4人。那么車上總?cè)藬?shù)是

  4÷(1-1/2)÷(1-1/3)÷……÷(1-1/6)÷(1-1/7)=28人

  那么,起點時車上乘客有28-3=25人。

  7. 有三塊草地,面積分別是4畝、8畝、10畝.草地上的草一樣厚,而且長得一樣快,第一塊草地可供24頭牛吃6周,第二塊草地可供36頭牛吃12周.問第三塊草地可供50頭牛吃幾周?

  解法一:設每頭牛每周吃1份草。

  第一塊草地4畝可供24頭牛吃6周,

  說明每畝可供24÷4=6頭牛吃6周。

  第二塊草地8畝可共36頭牛吃12周,

  說明每畝草地可供36÷8=9/2頭牛吃12周。

  所以,每畝草地每周要長(9/2×12-6×6)÷(12-6)=3份

  所以,每畝原有草6×6-6×3=18份。

  因此,第三塊草地原有草18×10=180份,每周長3×10=30份。

  所以,第三塊草地可供50頭牛吃180÷(50-30)=9周

  解法二:設每頭牛每周吃1份草。我們把題目進行變形。

  有一塊1畝的草地,可供24÷4=6頭牛吃6周,供36÷8=9/2頭牛吃12周,那么可供50÷10=5頭牛吃多少周呢?

  所以,每周草會長(9/2×12-6×6)÷(12-6)=3份,

  原有草(6-3)×6=18份,

  那么就夠5頭牛吃18÷(5-3)=9周

  8. B地在A,C兩地之間.甲從B地到A地去,出發(fā)后1小時,乙從B地出發(fā)到C地,乙出發(fā)后1小時,丙突然想起要通知甲、乙一件重要的事情,于是從B地出發(fā)騎車去追趕甲和乙.已知甲和乙的速度相等,丙的速度是甲、乙速度的3倍,為使丙從B地出發(fā)到最終趕回B地所用的時間最少,丙應當先追甲再返回追乙,還是先追乙再返回追甲?

  我的思考如下:

  如果先追乙返回,時間是1÷(3-1)×2=1小時,

  再追甲后返回,時間是3÷(3-1)×2=3小時,

  共用去3+1=4小時

  如果先追甲返回,時間是2÷(3-1)×2=2小時,

  再追乙后返回,時間是3÷(3-1)×2=3小時,

  共用去2+3=5小時

  所以先追乙時間最少。故先追更后出發(fā)的。

  9. 一把小刀售價3元.如果小明買了這把小刀,那么小明與小強的錢數(shù)之比是2:5;如果小強買了這把小刀,那么兩人的錢數(shù)之比是8:13.小明原來有多少元錢?

  解法一:

  小明買,小明剩下的錢是兩人剩下的錢的2÷(2+5)=2/7

  如果小強買,那么小明的錢是兩人剩下的錢的8÷(8+13)=8/21

  所以小明剩下的錢占他自己原來的錢的2/7÷8/21=3/4。

  所以小明原來的錢有3÷(1-3/4)=12元。

  解法二:

  如果小明買,

  剩下(8+13)÷(2+5)×2=6份,

  用掉8-6=2份。

  所以小明有3÷2×8=12元。

  10. 環(huán)形跑道周長是500米,甲、乙兩人從起點按順時針方向同時出發(fā).甲每分鐘跑120米,乙每分鐘跑100米,兩人都是每跑200米停下來休息1分鐘,那么甲第一次追上乙需要多少分鐘?

  解:對于這個題目,我有兩個理解。

  第一,甲乙出發(fā)后第一次停留在同一個地方。

  那么就有當甲行200米之后,再出發(fā)的時間是200÷120+1>2分鐘。

  這時,乙用2分鐘,也行了100×2=200米的地方。

  意思是說,乙行了2分鐘,就和在休息的甲在200米的地方停留。

  第二,甲比乙多行500米而追上。

  因為行完之后,甲比乙多行500米,

  那么就說明多休息500÷200=2……100,即2次。

  即甲追乙的路程是500+100×2=700米

  要追700米,甲需要走700÷(120-100)=35分

  甲行35分鐘需要休息35×120÷200-1=20分

  所以共需35+20=55分

【小學典型數(shù)學應用題及其解析】相關文章:

小學數(shù)學經(jīng)典應用題解析大全01-23

小升初數(shù)學典型應用題08-10

小升初典型數(shù)學應用題解題08-10

小學典型應用題的詳解07-03

2017小升初數(shù)學典型應用題解答01-23

2016小升初數(shù)學典型例題的口訣及解析01-21

小學三年級數(shù)學應用題解析10-05

2017小升初數(shù)學應用題解答思路解析02-24

小學數(shù)學連乘的應用題03-22