小學(xué)應(yīng)用題解題技巧
掌握應(yīng)用題解題技巧,輕松考數(shù)學(xué),那么,下面請(qǐng)看小編給大家整理收集的小學(xué)應(yīng)用題解題技巧,供大家閱讀參考。
小學(xué)應(yīng)用題解題技巧:
1.歸一問(wèn)題
【含義】在解題時(shí),先求出一份是多少(即單一量),然后以單一量為標(biāo)準(zhǔn),求出所要求的數(shù)量。這類(lèi)應(yīng)用題叫做歸一問(wèn)題。
【數(shù)量關(guān)系】總量÷份數(shù)=1份數(shù)量
1份數(shù)量×所占份數(shù)=所求幾份的數(shù)量
另一總量÷(總量÷份數(shù))=所求份數(shù)
【解題思路和方法】先求出單一量,以單一量為標(biāo)準(zhǔn),求出所要求的數(shù)量。
例1買(mǎi)5支鉛筆要0.6元錢(qián),買(mǎi)同樣的鉛筆16支,需要多少錢(qián)?
解(1)買(mǎi)1支鉛筆多少錢(qián)?0.6÷5=0.12(元)
。2)買(mǎi)16支鉛筆需要多少錢(qián)?0.12×16=1.92(元)
列成綜合算式0.6÷5×16=0.12×16=1.92(元)
答:需要1.92元。
例23臺(tái)拖拉機(jī)3天耕地90公頃,照這樣計(jì)算,5臺(tái)拖拉機(jī)6天耕地多少公頃?
解(1)1臺(tái)拖拉機(jī)1天耕地多少公頃?90÷3÷3=10(公頃)
。2)5臺(tái)拖拉機(jī)6天耕地多少公頃?10×5×6=300(公頃)
列成綜合算式90÷3÷3×5×6=10×30=300(公頃)
答:5臺(tái)拖拉機(jī)6天耕地300公頃。
例35輛汽車(chē)4次可以運(yùn)送100噸鋼材,如果用同樣的7輛汽車(chē)運(yùn)送105噸鋼材,需要運(yùn)幾次?
解(1)1輛汽車(chē)1次能運(yùn)多少?lài)嶄摬模?00÷5÷4=5(噸)
。2)7輛汽車(chē)1次能運(yùn)多少?lài)嶄摬模?×7=35(噸)
(3)105噸鋼材7輛汽車(chē)需要運(yùn)幾次?105÷35=3(次)
列成綜合算式105÷(100÷5÷4×7)=3(次)
答:需要運(yùn)3次。
2.歸總問(wèn)題
【含義】解題時(shí),常常先找出“總數(shù)量”,然后再根據(jù)其它條件算出所求的問(wèn)題,叫歸總問(wèn)題。所謂“總數(shù)量”是指貨物的總價(jià)、幾小時(shí)(幾天)的總工作量、幾公畝地上的總產(chǎn)量、幾小時(shí)行的總路程等。
【數(shù)量關(guān)系】1份數(shù)量×份數(shù)=總量
總量÷1份數(shù)量=份數(shù)
總量÷另一份數(shù)=另一每份數(shù)量
【解題思路和方法】先求出總數(shù)量,再根據(jù)題意得出所求的數(shù)量。
例1服裝廠原來(lái)做一套衣服用布3.2米,改進(jìn)裁剪方法后,每套衣服用布2.8米。原來(lái)做791套衣服的布,現(xiàn)在可以做多少套?
解(1)這批布總共有多少米?3.2×791=2531.2(米)
。2)現(xiàn)在可以做多少套?2531.2÷2.8=904(套)
列成綜合算式3.2×791÷2.8=904(套)
答:現(xiàn)在可以做904套。
例2小華每天讀24頁(yè)書(shū),12天讀完了《紅巖》一書(shū)。小明每天讀36頁(yè)書(shū),幾天可以讀完《紅巖》?
解(1)《紅巖》這本書(shū)總共多少頁(yè)?24×12=288(頁(yè))
(2)小明幾天可以讀完《紅巖》?288÷36=8(天)
列成綜合算式24×12÷36=8(天)
答:小明8天可以讀完《紅巖》。
例3食堂運(yùn)來(lái)一批蔬菜,原計(jì)劃每天吃50千克,30天慢慢消費(fèi)完這批蔬菜。后來(lái)根據(jù)大家的意見(jiàn),每天比原計(jì)劃多吃10千克,這批蔬菜可以吃多少天?
解(1)這批蔬菜共有多少千克?50×30=1500(千克)
(2)這批蔬菜可以吃多少天?1500÷(50+10)=25(天)
列成綜合算式50×30÷(50+10)=1500÷60=25(天)
答:這批蔬菜可以吃25天。
3.和差問(wèn)題
【含義】已知兩個(gè)數(shù)量的和與差,求這兩個(gè)數(shù)量各是多少,這類(lèi)應(yīng)用題叫和差問(wèn)題。
【數(shù)量關(guān)系】大數(shù)=(和+差)÷2
小數(shù)=(和-差)÷2
【解題思路和方法】簡(jiǎn)單的題目可以直接套用公式;復(fù)雜的題目變通后再用公式。
例1甲乙兩班共有學(xué)生98人,甲班比乙班多6人,求兩班各有多少人?
解甲班人數(shù)=(98+6)÷2=52(人)
乙班人數(shù)=(98-6)÷2=46(人)
答:甲班有52人,乙班有46人。
例2長(zhǎng)方形的長(zhǎng)和寬之和為18厘米,長(zhǎng)比寬多2厘米,求長(zhǎng)方形的面積。
解長(zhǎng)=(18+2)÷2=10(厘米)
寬=(18-2)÷2=8(厘米)
長(zhǎng)方形的面積=10×8=80(平方厘米)
答:長(zhǎng)方形的面積為80平方厘米。
例3有甲乙丙三袋化肥,甲乙兩袋共重32千克,乙丙兩袋共重30千克,甲丙兩袋共重22千克,求三袋化肥各重多少千克。
解甲乙兩袋、乙丙兩袋都含有乙,從中可以看出甲比丙多(32-30)=2千克,且甲是大數(shù),丙是小數(shù)。由此可知
甲袋化肥重量=(22+2)÷2=12(千克)
丙袋化肥重量=(22-2)÷2=10(千克)
乙袋化肥重量=32-12=20(千克)
答:甲袋化肥重12千克,乙袋化肥重20千克,丙袋化肥重10千克。
例4甲乙兩車(chē)原來(lái)共裝蘋(píng)果97筐,從甲車(chē)取下14筐放到乙車(chē)上,結(jié)果甲車(chē)比乙車(chē)還多3筐,兩車(chē)原來(lái)各裝蘋(píng)果多少筐?
解“從甲車(chē)取下14筐放到乙車(chē)上,結(jié)果甲車(chē)比乙車(chē)還多3筐”,這說(shuō)明甲車(chē)是大數(shù),乙車(chē)是小數(shù),甲與乙的差是(14×2+3),甲與乙的和是97,因此甲車(chē)筐數(shù)=(97+14×2+3)÷2=64(筐)
乙車(chē)筐數(shù)=97-64=33(筐)
答:甲車(chē)原來(lái)裝蘋(píng)果64筐,乙車(chē)原來(lái)裝蘋(píng)果33筐。
4.和倍問(wèn)題
【含義】已知兩個(gè)數(shù)的和及大數(shù)是小數(shù)的幾倍(或小數(shù)是大數(shù)的幾分之幾),要求這兩個(gè)數(shù)各是多少,這類(lèi)應(yīng)用題叫做和倍問(wèn)題。
【數(shù)量關(guān)系】總和÷(幾倍+1)=較小的數(shù)
總和-較小的數(shù)=較大的數(shù)
較小的數(shù)×幾倍=較大的數(shù)
【解題思路和方法】簡(jiǎn)單的題目直接利用公式,復(fù)雜的題目變通后利用公式。
例1果園里有杏樹(shù)和桃樹(shù)共248棵,桃樹(shù)的棵數(shù)是杏樹(shù)的3倍,求杏樹(shù)、桃樹(shù)各多少棵?
解(1)杏樹(shù)有多少棵?248÷(3+1)=62(棵)
。2)桃樹(shù)有多少棵?62×3=186(棵)
答:杏樹(shù)有62棵,桃樹(shù)有186棵。
例2東西兩個(gè)倉(cāng)庫(kù)共存糧480噸,東庫(kù)存糧數(shù)是西庫(kù)存糧數(shù)的1.4倍,求兩庫(kù)各存糧多少?lài)崳?/p>
解(1)西庫(kù)存糧數(shù)=480÷(1.4+1)=200(噸)
(2)東庫(kù)存糧數(shù)=480-200=280(噸)
答:東庫(kù)存糧280噸,西庫(kù)存糧200噸。
例3甲站原有車(chē)52輛,乙站原有車(chē)32輛,若每天從甲站開(kāi)往乙站28輛,從乙站開(kāi)往甲站24輛,幾天后乙站車(chē)輛數(shù)是甲站的2倍?
解每天從甲站開(kāi)往乙站28輛,從乙站開(kāi)往甲站24輛,相當(dāng)于每天從甲站開(kāi)往乙站(28-24)輛。把幾天以后甲站的車(chē)輛數(shù)當(dāng)作1倍量,這時(shí)乙站的車(chē)輛數(shù)就是2倍量,兩站的車(chē)輛總數(shù)(52+32)就相當(dāng)于(2+1)倍,
那么,幾天以后甲站的車(chē)輛數(shù)減少為
。52+32)÷(2+1)=28(輛)
所求天數(shù)為(52-28)÷(28-24)=6(天)
答:6天以后乙站車(chē)輛數(shù)是甲站的2倍。
例4甲乙丙三數(shù)之和是170,乙比甲的2倍少4,丙比甲的3倍多6,求三數(shù)各是多少?
解乙丙兩數(shù)都與甲數(shù)有直接關(guān)系,因此把甲數(shù)作為1倍量。
因?yàn)橐冶燃椎?倍少4,所以給乙加上4,乙數(shù)就變成甲數(shù)的2倍;
又因?yàn)楸燃椎?倍多6,所以丙數(shù)減去6就變?yōu)榧讛?shù)的3倍;
這時(shí)(170+4-6)就相當(dāng)于(1+2+3)倍。那么,
甲數(shù)=(170+4-6)÷(1+2+3)=28
乙數(shù)=28×2-4=52
丙數(shù)=28×3+6=90
答:甲數(shù)是28,乙數(shù)是52,丙數(shù)是90。
5.差倍問(wèn)題
【含義】已知兩個(gè)數(shù)的差及大數(shù)是小數(shù)的幾倍(或小數(shù)是大數(shù)的幾分之幾),要求這兩個(gè)數(shù)各是多少,這類(lèi)應(yīng)用題叫做差倍問(wèn)題。
【數(shù)量關(guān)系】?jī)蓚(gè)數(shù)的差÷(幾倍-1)=較小的數(shù)
較小的數(shù)×幾倍=較大的數(shù)
【解題思路和方法】簡(jiǎn)單的題目直接利用公式,復(fù)雜的題目變通后利用公式。
例1果園里桃樹(shù)的棵數(shù)是杏樹(shù)的3倍,而且桃樹(shù)比杏樹(shù)多124棵。求杏樹(shù)、桃樹(shù)各多少棵?
解(1)杏樹(shù)有多少棵?124÷(3-1)=62(棵)
。2)桃樹(shù)有多少棵?62×3=186(棵)
答:果園里杏樹(shù)是62棵,桃樹(shù)是186棵。
例2爸爸比兒子大27歲,今年,爸爸的年齡是兒子年齡的4倍,求父子二人今年各是多少歲?
解(1)兒子年齡=27÷(4-1)=9(歲)
。2)爸爸年齡=9×4=36(歲)
答:父子二人今年的年齡分別是36歲和9歲。
例3商場(chǎng)改革經(jīng)營(yíng)管理辦法后,本月盈利比上月盈利的2倍還多12萬(wàn)元,又知本月盈利比上月盈利多30萬(wàn)元,求這兩個(gè)月盈利各是多少萬(wàn)元?
解如果把上月盈利作為1倍量,則(30-12)萬(wàn)元就相當(dāng)于上月盈利的(2-1)倍,因此
上月盈利=(30-12)÷(2-1)=18(萬(wàn)元)
本月盈利=18+30=48(萬(wàn)元)
答:上月盈利是18萬(wàn)元,本月盈利是48萬(wàn)元。
例4糧庫(kù)有94噸小麥和138噸玉米,如果每天運(yùn)出小麥和玉米各是9噸,問(wèn)幾天后剩下的玉米是小麥的3倍?
解由于每天運(yùn)出的小麥和玉米的數(shù)量相等,所以剩下的數(shù)量差等于原來(lái)的.數(shù)量差(138-94)。把幾天后剩下的小麥看作1倍量,則幾天后剩下的玉米就是3倍量,那么,(138-94)就相當(dāng)于(3-1)倍,因此
剩下的小麥數(shù)量=(138-94)÷(3-1)=22(噸)
運(yùn)出的小麥數(shù)量=94-22=72(噸)
運(yùn)糧的天數(shù)=72÷9=8(天)
答:8天以后剩下的玉米是小麥的3倍。
6.倍比問(wèn)題
【含義】有兩個(gè)已知的同類(lèi)量,其中一個(gè)量是另一個(gè)量的若干倍,解題時(shí)先求出這個(gè)倍數(shù),再用倍比的方法算出要求的數(shù),這類(lèi)應(yīng)用題叫做倍比問(wèn)題。
【數(shù)量關(guān)系】總量÷一個(gè)數(shù)量=倍數(shù)
另一個(gè)數(shù)量×倍數(shù)=另一總量
【解題思路和方法】先求出倍數(shù),再用倍比關(guān)系求出要求的數(shù)。
例1100千克油菜籽可以榨油40千克,現(xiàn)在有油菜籽3700千克,可以榨油多少?
解(1)3700千克是100千克的多少倍?3700÷100=37(倍)
。2)可以榨油多少千克?40×37=1480(千克)
列成綜合算式40×(3700÷100)=1480(千克)
答:可以榨油1480千克。
例2今年植樹(shù)節(jié)這天,某小學(xué)300名師生共植樹(shù)400棵,照這樣計(jì)算,全縣48000名師生共植樹(shù)多少棵?
解(1)48000名是300名的多少倍?48000÷300=160(倍)
。2)共植樹(shù)多少棵?400×160=64000(棵)
列成綜合算式400×(48000÷300)=64000(棵)
答:全縣48000名師生共植樹(shù)64000棵。
例3鳳翔縣今年蘋(píng)果大豐收,田家莊一戶人家4畝果園收入11111元,照這樣計(jì)算,全鄉(xiāng)800畝果園共收入多少元?全縣16000畝果園共收入多少元?
解(1)800畝是4畝的幾倍?800÷4=200(倍)
。2)800畝收入多少元?11111×200=2222200(元)
。3)16000畝是800畝的幾倍?16000÷800=20(倍)
。4)16000畝收入多少元?2222200×20=44444000(元)
答:全鄉(xiāng)800畝果園共收入2222200元,
全縣16000畝果園共收入44444000元。
7.相遇問(wèn)題
【含義】?jī)蓚(gè)運(yùn)動(dòng)的物體同時(shí)由兩地出發(fā)相向而行,在途中相遇。這類(lèi)應(yīng)用題叫做相遇問(wèn)題。
【數(shù)量關(guān)系】相遇時(shí)間=總路程÷(甲速+乙速)
總路程=(甲速+乙速)×相遇時(shí)間
【解題思路和方法】簡(jiǎn)單的題目可直接利用公式,復(fù)雜的題目變通后再利用公式。
例1南京到上海的水路長(zhǎng)392千米,同時(shí)從兩港各開(kāi)出一艘輪船相對(duì)而行,從南京開(kāi)出的船每小時(shí)行28千米,從上海開(kāi)出的船每小時(shí)行21千米,經(jīng)過(guò)幾小時(shí)兩船相遇?
解392÷(28+21)=8(小時(shí))
答:經(jīng)過(guò)8小時(shí)兩船相遇。
例2小李和小劉在周長(zhǎng)為400米的環(huán)形跑道上跑步,小李每秒鐘跑5米,小劉每秒鐘跑3米,他們從同一地點(diǎn)同時(shí)出發(fā),反向而跑,那么,二人從出發(fā)到第二次相遇需多長(zhǎng)時(shí)間?
解“第二次相遇”可以理解為二人跑了兩圈。
因此總路程為400×2
相遇時(shí)間=(400×2)÷(5+3)=100(秒)
答:二人從出發(fā)到第二次相遇需100秒時(shí)間。
例3甲乙二人同時(shí)從兩地騎自行車(chē)相向而行,甲每小時(shí)行15千米,乙每小時(shí)行13千米,兩人在距中點(diǎn)3千米處相遇,求兩地的距離。
解“兩人在距中點(diǎn)3千米處相遇”是正確理解本題題意的關(guān)鍵。從題中可知甲騎得快,乙騎得慢,甲過(guò)了中點(diǎn)3千米,乙距中點(diǎn)3千米,就是說(shuō)甲比乙多走的路程是(3×2)千米,因此,
相遇時(shí)間=(3×2)÷(15-13)=3(小時(shí))
兩地距離=(15+13)×3=84(千米)
答:兩地距離是84千米。
8.追及問(wèn)題
【含義】?jī)蓚(gè)運(yùn)動(dòng)物體在不同地點(diǎn)同時(shí)出發(fā)(或者在同一地點(diǎn)而不是同時(shí)出發(fā),或者在不同地點(diǎn)又不是同時(shí)出發(fā))作同向運(yùn)動(dòng),在后面的,行進(jìn)速度要快些,在前面的,行進(jìn)速度較慢些,在一定時(shí)間之內(nèi),后面的追上前面的物體。這類(lèi)應(yīng)用題就叫做追及問(wèn)題。
【數(shù)量關(guān)系】追及時(shí)間=追及路程÷(快速-慢速)
追及路程=(快速-慢速)×追及時(shí)間
【解題思路和方法】簡(jiǎn)單的題目直接利用公式,復(fù)雜的題目變通后利用公式。
例1好馬每天走120千米,劣馬每天走75千米,劣馬先走12天,好馬幾天能追上劣馬?
解(1)劣馬先走12天能走多少千米?75×12=900(千米)
(2)好馬幾天追上劣馬?900÷(120-75)=20(天)
列成綜合算式75×12÷(120-75)=900÷45=20(天)
答:好馬20天能追上劣馬。
例2小明和小亮在200米環(huán)形跑道上跑步,小明跑一圈用40秒,他們從同一地點(diǎn)同時(shí)出發(fā),同向而跑。小明第一次追上小亮?xí)r跑了500米,求小亮的速度是每秒多少米。
解小明第一次追上小亮?xí)r比小亮多跑一圈,即200米,此時(shí)小亮跑了(500-200)米,要知小亮的速度,須知追及時(shí)間,即小明跑500米所用的時(shí)間。又知小明跑200米用40秒,則跑500米用[40×(500÷200)]秒,所以小亮的速度是
。500-200)÷[40×(500÷200)]
=300÷100=3(米)
答:小亮的速度是每秒3米。
例3我人民解放軍追擊一股逃竄的敵人,敵人在下午16點(diǎn)開(kāi)始從甲地以每小時(shí)10千米的速度逃跑,解放軍在晚上22點(diǎn)接到命令,以每小時(shí)30千米的速度開(kāi)始從乙地追擊。已知甲乙兩地相距60千米,問(wèn)解放軍幾個(gè)小時(shí)可以追上敵人?
解敵人逃跑時(shí)間與解放軍追擊時(shí)間的時(shí)差是(22-16)小時(shí),這段時(shí)間敵人逃跑的路程是[10×(22-6)]千米,甲乙兩地相距60千米。由此推知
追及時(shí)間=[10×(22-6)+60]÷(30-10)
。220÷20=11(小時(shí))
答:解放軍在11小時(shí)后可以追上敵人。
例4一輛客車(chē)從甲站開(kāi)往乙站,每小時(shí)行48千米;一輛貨車(chē)同時(shí)從乙站開(kāi)往甲站,每小時(shí)行40千米,兩車(chē)在距兩站中點(diǎn)16千米處相遇,求甲乙兩站的距離。
解這道題可以由相遇問(wèn)題轉(zhuǎn)化為追及問(wèn)題來(lái)解決。從題中可知客車(chē)落后于貨車(chē)(16×2)千米,客車(chē)追上貨車(chē)的時(shí)間就是前面所說(shuō)的相遇時(shí)間,
這個(gè)時(shí)間為16×2÷(48-40)=4(小時(shí))
所以兩站間的距離為(48+40)×4=352(千米)
列成綜合算式(48+40)×[16×2÷(48-40)]
。88×4
。352(千米)
答:甲乙兩站的距離是352千米。
例5兄妹二人同時(shí)由家上學(xué),哥哥每分鐘走90米,妹妹每分鐘走60米。哥哥到校門(mén)口時(shí)發(fā)現(xiàn)忘記帶課本,立即沿原路回家去取,行至離校180米處和妹妹相遇。問(wèn)他們家離學(xué)校有多遠(yuǎn)?
解要求距離,速度已知,所以關(guān)鍵是求出相遇時(shí)間。從題中可知,在相同時(shí)間(從出發(fā)到相遇)內(nèi)哥哥比妹妹多走(180×2)米,這是因?yàn)楦绺绫让妹妹糠昼姸嘧撸?0-60)米,
那么,二人從家出走到相遇所用時(shí)間為
180×2÷(90-60)=12(分鐘)
家離學(xué)校的距離為90×12-180=900(米)
答:家離學(xué)校有900米遠(yuǎn)。
例6孫亮打算上課前5分鐘到學(xué)校,他以每小時(shí)4千米的速度從家步行去學(xué)校,當(dāng)他走了1千米時(shí),發(fā)現(xiàn)手表慢了10分鐘,因此立即跑步前進(jìn),到學(xué)校恰好準(zhǔn)時(shí)上課。后來(lái)算了一下,如果孫亮從家一開(kāi)始就跑步,可比原來(lái)步行早9分鐘到學(xué)校。求孫亮跑步的速度。
解手表慢了10分鐘,就等于晚出發(fā)10分鐘,如果按原速走下去,就要遲到(10-5)分鐘,后段路程跑步恰準(zhǔn)時(shí)到學(xué)校,說(shuō)明后段路程跑比走少用了(10-5)分鐘。如果從家一開(kāi)始就跑步,可比步行少9分鐘,由此可知,行1千米,跑步比步行少用[9-(10-5)]分鐘。
所以
步行1千米所用時(shí)間為1÷[9-(10-5)]
。0.25(小時(shí))
。15(分鐘)
跑步1千米所用時(shí)間為15-[9-(10-5)]=11(分鐘)
跑步速度為每小時(shí)1÷11/60=5.5(千米)
答:孫亮跑步速度為每小時(shí)5.5千米。
9.植樹(shù)問(wèn)題
【含義】按相等的距離植樹(shù),在距離、棵距、棵數(shù)這三個(gè)量之間,已知其中的兩個(gè)量,要求第三個(gè)量,這類(lèi)應(yīng)用題叫做植樹(shù)問(wèn)題。
【數(shù)量關(guān)系】線形植樹(shù)棵數(shù)=距離÷棵距+1
環(huán)形植樹(shù)棵數(shù)=距離÷棵距
方形植樹(shù)棵數(shù)=距離÷棵距-4
三角形植樹(shù)棵數(shù)=距離÷棵距-3
面積植樹(shù)棵數(shù)=面積÷(棵距×行距)
【解題思路和方法】先弄清楚植樹(shù)問(wèn)題的類(lèi)型,然后可以利用公式。
例1一條河堤136米,每隔2米栽一棵垂柳,頭尾都栽,一共要栽多少棵垂柳?
解136÷2+1=68+1=69(棵)
答:一共要栽69棵垂柳。
例2一個(gè)圓形池塘周長(zhǎng)為400米,在岸邊每隔4米栽一棵白楊樹(shù),一共能栽多少棵白楊樹(shù)?
解400÷4=100(棵)
答:一共能栽100棵白楊樹(shù)。
例3一個(gè)正方形的運(yùn)動(dòng)場(chǎng),每邊長(zhǎng)220米,每隔8米安裝一個(gè)照明燈,一共可以安裝多少個(gè)照明燈?
解220×4÷8-4=110-4=106(個(gè))
答:一共可以安裝106個(gè)照明燈。
例4給一個(gè)面積為96平方米的住宅鋪設(shè)地板磚,所用地板磚的長(zhǎng)和寬分別是60厘米和40厘米,問(wèn)至少需要多少塊地板磚?
解96÷(0.6×0.4)=96÷0.24=400(塊)
答:至少需要400塊地板磚。
例5一座大橋長(zhǎng)500米,給橋兩邊的電桿上安裝路燈,若每隔50米有一個(gè)電桿,每個(gè)電桿上安裝2盞路燈,一共可以安裝多少盞路燈?
解(1)橋的一邊有多少個(gè)電桿?500÷50+1=11(個(gè))
。2)橋的兩邊有多少個(gè)電桿?11×2=22(個(gè))
(3)大橋兩邊可安裝多少盞路燈?22×2=44(盞)
答:大橋兩邊一共可以安裝44盞路燈。
10.年齡問(wèn)題
【含義】這類(lèi)問(wèn)題是根據(jù)題目的內(nèi)容而得名,它的主要特點(diǎn)是兩人的年齡差不變,但是,兩人年齡之間的倍數(shù)關(guān)系隨著年齡的增長(zhǎng)在發(fā)生變化。
【數(shù)量關(guān)系】年齡問(wèn)題往往與和差、和倍、差倍問(wèn)題有著密切聯(lián)系,尤其與差倍問(wèn)題的解題思路是一致的,要緊緊抓住“年齡差不變”這個(gè)特點(diǎn)。
【解題思路和方法】可以利用“差倍問(wèn)題”的解題思路和方法。
例1爸爸今年35歲,亮亮今年5歲,今年爸爸的年齡是亮亮的幾倍?明年呢?
解35÷5=7(倍)
。35+1)÷(5+1)=6(倍)
答:今年爸爸的年齡是亮亮的7倍,
明年爸爸的年齡是亮亮的6倍。
例2母親今年37歲,女兒今年7歲,幾年后母親的年齡是女兒的4倍?
解(1)母親比女兒的年齡大多少歲?37-7=30(歲)
。2)幾年后母親的年齡是女兒的4倍?30÷(4-1)-7=3(年)
列成綜合算式(37-7)÷(4-1)-7=3(年)
答:3年后母親的年齡是女兒的4倍。
例33年前父子的年齡和是49歲,今年父親的年齡是兒子年齡的4倍,父子今年各多少歲?
解今年父子的年齡和應(yīng)該比3年前增加(3×2)歲,
今年二人的年齡和為49+3×2=55(歲)
把今年兒子年齡作為1倍量,則今年父子年齡和相當(dāng)于(4+1)倍,因此,今年兒子年齡為55÷(4+1)=11(歲)
今年父親年齡為11×4=44(歲)
答:今年父親年齡是44歲,兒子年齡是11歲。
11.行船問(wèn)題
【含義】行船問(wèn)題也就是與航行有關(guān)的問(wèn)題。解答這類(lèi)問(wèn)題要弄清船速與水速,船速是船只本身航行的速度,也就是船只在靜水中航行的速度;水速是水流的速度,船只順?biāo)叫械乃俣仁谴倥c水速之和;船只逆水航行的速度是船速與水速之差。
【數(shù)量關(guān)系】(順?biāo)俣龋嫠俣龋?=船速
(順?biāo)俣龋嫠俣龋?=水速
順?biāo)伲酱佟?-逆水速=逆水速+水速×2
逆水速=船速×2-順?biāo)伲巾標(biāo)伲佟?
【解題思路和方法】大多數(shù)情況可以直接利用數(shù)量關(guān)系的公式。
例1一只船順?biāo)?20千米需用8小時(shí),水流速度為每小時(shí)15千米,這只船逆水行這段路程需用幾小時(shí)?
解由條件知,順?biāo)伲酱伲伲?20÷8,而水速為每小時(shí)15千米,所以,船速為每小時(shí)320÷8-15=25(千米)
船的逆水速為25-15=10(千米)
船逆水行這段路程的時(shí)間為320÷10=32(小時(shí))
答:這只船逆水行這段路程需用32小時(shí)。
例2甲船逆水行360千米需18小時(shí),返回原地需10小時(shí);乙船逆水行同樣一段距離需15小時(shí),返回原地需多少時(shí)間?
解由題意得甲船速+水速=360÷10=36
甲船速-水速=360÷18=20
可見(jiàn)(36-20)相當(dāng)于水速的2倍,
所以,水速為每小時(shí)(36-20)÷2=8(千米)
又因?yàn),乙船速-水速?60÷15,
所以,乙船速為360÷15+8=32(千米)
乙船順?biāo)贋?2+8=40(千米)
所以,乙船順?biāo)叫?60千米需要
360÷40=9(小時(shí))
答:乙船返回原地需要9小時(shí)。
例3一架飛機(jī)飛行在兩個(gè)城市之間,飛機(jī)的速度是每小時(shí)576千米,風(fēng)速為每小時(shí)24千米,飛機(jī)逆風(fēng)飛行3小時(shí)到達(dá),順風(fēng)飛回需要幾小時(shí)?
解這道題可以按照流水問(wèn)題來(lái)解答。
。1)兩城相距多少千米?
。576-24)×3=1656(千米)
(2)順風(fēng)飛回需要多少小時(shí)?
1656÷(576+24)=2.76(小時(shí))
列成綜合算式
[(576-24)×3]÷(576+24)
。2.76(小時(shí))
答:飛機(jī)順風(fēng)飛回需要2.76小時(shí)。
12.列車(chē)問(wèn)題
【含義】這是與列車(chē)行駛有關(guān)的一些問(wèn)題,解答時(shí)要注意列車(chē)車(chē)身的長(zhǎng)度。
【數(shù)量關(guān)系】火車(chē)過(guò)橋:過(guò)橋時(shí)間=(車(chē)長(zhǎng)+橋長(zhǎng))÷車(chē)速
火車(chē)追及:追及時(shí)間=(甲車(chē)長(zhǎng)+乙車(chē)長(zhǎng)+距離)
÷(甲車(chē)速-乙車(chē)速)
火車(chē)相遇:相遇時(shí)間=(甲車(chē)長(zhǎng)+乙車(chē)長(zhǎng)+距離)
÷(甲車(chē)速+乙車(chē)速)
【解題思路和方法】大多數(shù)情況可以直接利用數(shù)量關(guān)系的公式。
例1一座大橋長(zhǎng)2400米,一列火車(chē)以每分鐘900米的速度通過(guò)大橋,從車(chē)頭開(kāi)上橋到車(chē)尾離開(kāi)橋共需要3分鐘。這列火車(chē)長(zhǎng)多少米?
解火車(chē)3分鐘所行的路程,就是橋長(zhǎng)與火車(chē)車(chē)身長(zhǎng)度的和。
。1)火車(chē)3分鐘行多少米?900×3=2700(米)
。2)這列火車(chē)長(zhǎng)多少米?2700-2400=300(米)
列成綜合算式900×3-2400=300(米)
答:這列火車(chē)長(zhǎng)300米。
例2一列長(zhǎng)200米的火車(chē)以每秒8米的速度通過(guò)一座大橋,用了2分5秒鐘時(shí)間,求大橋的長(zhǎng)度是多少米?
解火車(chē)過(guò)橋所用的時(shí)間是2分5秒=125秒,所走的路程是(8×125)米,這段路程就是(200米+橋長(zhǎng)),所以,橋長(zhǎng)為
8×125-200=800(米)
答:大橋的長(zhǎng)度是800米。
例3一列長(zhǎng)225米的慢車(chē)以每秒17米的速度行駛,一列長(zhǎng)140米的快車(chē)以每秒22米的速度在后面追趕,求快車(chē)從追上到追過(guò)慢車(chē)需要多長(zhǎng)時(shí)間?
解從追上到追過(guò),快車(chē)比慢車(chē)要多行(225+140)米,而快車(chē)比慢車(chē)每秒多行(22-17)米,因此,所求的時(shí)間為
(225+140)÷(22-17)=73(秒)
答:需要73秒。
例4一列長(zhǎng)150米的列車(chē)以每秒22米的速度行駛,有一個(gè)扳道工人以每秒3米的速度迎面走來(lái),那么,火車(chē)從工人身旁駛過(guò)需要多少時(shí)間?
解如果把人看作一列長(zhǎng)度為零的火車(chē),原題就相當(dāng)于火車(chē)相遇問(wèn)題。
150÷(22+3)=6(秒)
答:火車(chē)從工人身旁駛過(guò)需要6秒鐘。
例5一列火車(chē)穿越一條長(zhǎng)2000米的隧道用了88秒,以同樣的速度通過(guò)一條長(zhǎng)1250米的大橋用了58秒。求這列火車(chē)的車(chē)速和車(chē)身長(zhǎng)度各是多少?
解車(chē)速和車(chē)長(zhǎng)都沒(méi)有變,但通過(guò)隧道和大橋所用的時(shí)間不同,是因?yàn)樗淼辣却髽蜷L(zhǎng)?芍疖(chē)在(88-58)秒的時(shí)間內(nèi)行駛了(2000-1250)米的路程,因此,火車(chē)的車(chē)速為每秒
。2000-1250)÷(88-58)=25(米)
進(jìn)而可知,車(chē)長(zhǎng)和橋長(zhǎng)的和為(25×58)米,
因此,車(chē)長(zhǎng)為25×58-1250=200(米)
答:這列火車(chē)的車(chē)速是每秒25米,車(chē)身長(zhǎng)200米。
【小學(xué)應(yīng)用題解題技巧】相關(guān)文章:
3.小學(xué)分?jǐn)?shù)除法應(yīng)用題解題技巧
4.小學(xué)數(shù)學(xué)應(yīng)用題:典型應(yīng)用題解析