0時(shí),開(kāi)口方向向上,a0時(shí),拋物線(xiàn)向上開(kāi)口;當(dāng)a0),對(duì)稱(chēng)軸在y軸左;  當(dāng)a與b異號(hào)時(shí)">

亚洲国产日韩欧美在线a乱码,国产精品路线1路线2路线,亚洲视频一区,精品国产自,www狠狠,国产情侣激情在线视频免费看,亚洲成年网站在线观看

初三數(shù)學(xué)二次函數(shù)知識(shí)點(diǎn)

時(shí)間:2024-06-18 18:46:17 金磊 初中知識(shí) 我要投稿
  • 相關(guān)推薦

初三數(shù)學(xué)二次函數(shù)知識(shí)點(diǎn)

  上學(xué)的時(shí)候,說(shuō)到知識(shí)點(diǎn),大家是不是都習(xí)慣性的重視?知識(shí)點(diǎn)是指某個(gè)模塊知識(shí)的重點(diǎn)、核心內(nèi)容、關(guān)鍵部分。為了幫助大家掌握重要知識(shí)點(diǎn),以下是小編為大家收集的初三數(shù)學(xué)二次函數(shù)知識(shí)點(diǎn),僅供參考,大家一起來(lái)看看吧。

初三數(shù)學(xué)二次函數(shù)知識(shí)點(diǎn)

  定義與定義表達(dá)式

  一般地,自變量x和因變量y之間存在如下關(guān)系:

  y=ax^2+bx+c(a,b,c為常數(shù),a≠0,且a決定函數(shù)的開(kāi)口方向,a>0時(shí),開(kāi)口方向向上,a<0時(shí),開(kāi)口方向向下,IaI還可以決定開(kāi)口大小,IaI越大開(kāi)口就越小,IaI越小開(kāi)口就越大.)

  則稱(chēng)y為x的二次函數(shù)。

  二次函數(shù)表達(dá)式的右邊通常為二次三項(xiàng)式。

  二次函數(shù)的三種表達(dá)式

  一般式:y=ax^2;+bx+c(a,b,c為常數(shù),a≠0)

  頂點(diǎn)式:y=a(x-h)^2;+k[拋物線(xiàn)的頂點(diǎn)P(h,k)]

  交點(diǎn)式:y=a(x-x1)(x-x2)[僅限于與x軸有交點(diǎn)A(x1,0)和B(x2,0)的拋物線(xiàn)]

  注:在3種形式的互相轉(zhuǎn)化中,有如下關(guān)系:

  h=-b/2ak=(4ac-b^2;)/4ax1,x2=(-b±√b^2;-4ac)/2a

  二次函數(shù)的圖像

  在平面直角坐標(biāo)系中作出二次函數(shù)y=x2的圖像,可以看出,二次函數(shù)的圖像是一條拋物線(xiàn)。

  拋物線(xiàn)的性質(zhì)

  1.拋物線(xiàn)是軸對(duì)稱(chēng)圖形。對(duì)稱(chēng)軸為直線(xiàn)

  x=-b/2a。

  對(duì)稱(chēng)軸與拋物線(xiàn)唯一的交點(diǎn)為拋物線(xiàn)的頂點(diǎn)P。

  特別地,當(dāng)b=0時(shí),拋物線(xiàn)的對(duì)稱(chēng)軸是y軸(即直線(xiàn)x=0)

  2.拋物線(xiàn)有一個(gè)頂點(diǎn)P,坐標(biāo)為

  P[-b/2a,(4ac-b^2;)/4a]。

  當(dāng)-b/2a=0時(shí),P在y軸上;當(dāng)Δ=b^2-4ac=0時(shí),P在x軸上。

  3.二次項(xiàng)系數(shù)a決定拋物線(xiàn)的開(kāi)口方向和大小。

  當(dāng)a>0時(shí),拋物線(xiàn)向上開(kāi)口;當(dāng)a<0時(shí),拋物線(xiàn)向下開(kāi)口。

  |a|越大,則拋物線(xiàn)的開(kāi)口越小。

  4.一次項(xiàng)系數(shù)b和二次項(xiàng)系數(shù)a共同決定對(duì)稱(chēng)軸的位置。

  當(dāng)a與b同號(hào)時(shí)(即ab>0),對(duì)稱(chēng)軸在y軸左;

  當(dāng)a與b異號(hào)時(shí)(即ab<0),對(duì)稱(chēng)軸在y軸右。

  5.常數(shù)項(xiàng)c決定拋物線(xiàn)與y軸交點(diǎn)。

  拋物線(xiàn)與y軸交于(0,c)

  6.拋物線(xiàn)與x軸交點(diǎn)個(gè)數(shù)

  Δ=b^2-4ac>0時(shí),拋物線(xiàn)與x軸有2個(gè)交點(diǎn)。

  Δ=b^2-4ac=0時(shí),拋物線(xiàn)與x軸有1個(gè)交點(diǎn)。

  Δ=b^2-4ac<0時(shí),拋物線(xiàn)與x軸沒(méi)有交點(diǎn)。

  二次函數(shù)與一元二次方程

  特別地,二次函數(shù)(以下稱(chēng)函數(shù))y=ax^2;+bx+c,當(dāng)y=0時(shí),二次函數(shù)為關(guān)于x的一元二次方程(以下稱(chēng)方程),即ax^2;+bx+c=0

  此時(shí),函數(shù)圖像與x軸有無(wú)交點(diǎn)即方程有無(wú)實(shí)數(shù)根。

  函數(shù)與x軸交點(diǎn)的橫坐標(biāo)即為方程的根。

  畫(huà)拋物線(xiàn)y=ax2時(shí),應(yīng)先列表,再描點(diǎn),最后連線(xiàn)。列表選取自變量x值時(shí)常以0為中心,選取便于計(jì)算、描點(diǎn)的整數(shù)值,描點(diǎn)連線(xiàn)時(shí)一定要用光滑曲線(xiàn)連接,并注意變化趨勢(shì)。

  二次函數(shù)解析式的幾種形式

  (1)一般式:y=ax2+bx+c(a,b,c為常數(shù),a≠0).

  (2)頂點(diǎn)式:y=a(x-h)2+k(a,h,k為常數(shù),a≠0).

  (3)兩根式:y=a(x-x1)(x-x2),其中x1,x2是拋物線(xiàn)與x軸的交點(diǎn)的橫坐標(biāo),即一元二次方程ax2+bx+c=0的兩個(gè)根,a≠0.

  說(shuō)明:(1)任何一個(gè)二次函數(shù)通過(guò)配方都可以化為頂點(diǎn)式y(tǒng)=a(x-h)2+k,拋物線(xiàn)的頂點(diǎn)坐標(biāo)是(h,k),h=0時(shí),拋物線(xiàn)y=ax2+k的頂點(diǎn)在y軸上;當(dāng)k=0時(shí),拋物線(xiàn)a(x-h)2的頂點(diǎn)在x軸上;當(dāng)h=0且k=0時(shí),拋物線(xiàn)y=ax2的頂點(diǎn)在原點(diǎn)

  如果圖像經(jīng)過(guò)原點(diǎn),并且對(duì)稱(chēng)軸是y軸,則設(shè)y=ax^2;如果對(duì)稱(chēng)軸是y軸,但不過(guò)原點(diǎn),則設(shè)y=ax^2+k

  定義與定義表達(dá)式

  一般地,自變量x和因變量y之間存在如下關(guān)系:

  y=ax^2+bx+c

  (a,b,c為常數(shù),a≠0,且a決定函數(shù)的開(kāi)口方向,a>0時(shí),開(kāi)口方向向上,a<0時(shí),開(kāi)口方向向下。IaI還可以決定開(kāi)口大小,IaI越大開(kāi)口就越小,IaI越小開(kāi)口就越大。)

  則稱(chēng)y為x的二次函數(shù)。

  二次函數(shù)表達(dá)式的右邊通常為二次三項(xiàng)式。

  x是自變量,y是x的函數(shù)

  二次函數(shù)的三種表達(dá)式

 、僖话闶剑簓=ax^2+bx+c(a,b,c為常數(shù),a≠0)

 、陧旤c(diǎn)式[拋物線(xiàn)的頂點(diǎn)P(h,k)]:y=a(x-h)^2+k

 、劢稽c(diǎn)式[僅限于與x軸有交點(diǎn)A(x1,0)和B(x2,0)的拋物線(xiàn)]:y=a(x-x1)(x-x2)

  以上3種形式可進(jìn)行如下轉(zhuǎn)化:

 、僖话闶胶晚旤c(diǎn)式的關(guān)系

  對(duì)于二次函數(shù)y=ax^2+bx+c,其頂點(diǎn)坐標(biāo)為(-b/2a,(4ac-b^2)/4a),即

  h=-b/2a=(x1+x2)/2

  k=(4ac-b^2)/4a

 、谝话闶胶徒稽c(diǎn)式的關(guān)系

  x1,x2=[-b±√(b^2-4ac)]/2a(即一元二次方程求根公式) 

  二次函數(shù)及其圖像

  二次函數(shù)(quadraticfunction)是指未知數(shù)的最高次數(shù)為二次的多項(xiàng)式函數(shù)。二次函數(shù)可以表示為f(x)=ax^2bxc(a不為0)。其圖像是一條主軸平行于y軸的拋物線(xiàn)。

  一般的,自變量x和因變量y之間存在如下關(guān)系:

  一般式

  y=ax∧2;bxc(a≠0,a、b、c為常數(shù)),頂點(diǎn)坐標(biāo)為(-b/2a,-(4ac-b∧2)/4a);

  頂點(diǎn)式

  y=a(xm)∧2k(a≠0,a、m、k為常數(shù))或y=a(x-h)∧2k(a≠0,a、h、k為常數(shù)),頂點(diǎn)坐標(biāo)為(-m,k)對(duì)稱(chēng)軸為x=-m,頂點(diǎn)的位置特征和圖像的開(kāi)口方向與函數(shù)y=ax∧2的圖像相同,有時(shí)題目會(huì)指出讓你用配方法把一般式化成頂點(diǎn)式;

  交點(diǎn)式

  y=a(x-x1)(x-x2)[僅限于與x軸有交點(diǎn)A(x1,0)和B(x2,0)的拋物線(xiàn)];

  重要概念:a,b,c為常數(shù),a≠0,且a決定函數(shù)的開(kāi)口方向,a>0時(shí),開(kāi)口方向向上,a<0時(shí),開(kāi)口方向向下。a的絕對(duì)值還可以決定開(kāi)口大小,a的絕對(duì)值越大開(kāi)口就越小,a的絕對(duì)值越小開(kāi)口就越大。

  牛頓插值公式(已知三點(diǎn)求函數(shù)解析式)

  y=(y3(x-x1)(x-x2))/((x3-x1)(x3-x2)(y2(x-x1)(x-x3))/((x2-x1)(x2-x3)(y1(x-x2)(x-x3))/((x1-x2)(x1-x3)。由此可引導(dǎo)出交點(diǎn)式的系數(shù)a=y1/(x1*x2)(y1為截距)

  求根公式

  二次函數(shù)表達(dá)式的右邊通常為二次三項(xiàng)式。

  x是自變量,y是x的二次函數(shù)

  x1,x2=[-b±(√(b^2-4ac))]/2a

  (即一元二次方程求根公式)

  求根的方法還有因式分解法和配方法

  在平面直角坐標(biāo)系中作出二次函數(shù)y=2x的平方的圖像,可以看出,二次函數(shù)的圖像是一條永無(wú)止境的拋物線(xiàn)。不同的二次函數(shù)圖像

  如果所畫(huà)圖形準(zhǔn)確無(wú)誤,那么二次函數(shù)將是由一般式平移得到的。

  注意:草圖要有1本身圖像,旁邊注明函數(shù)。

  2畫(huà)出對(duì)稱(chēng)軸,并注明X=什么

  3與X軸交點(diǎn)坐標(biāo),與Y軸交點(diǎn)坐標(biāo),頂點(diǎn)坐標(biāo)。拋物線(xiàn)的性質(zhì)

  軸對(duì)稱(chēng)

  拋物線(xiàn)是軸對(duì)稱(chēng)圖形。對(duì)稱(chēng)軸為直線(xiàn)x=-b/2a。

  對(duì)稱(chēng)軸與拋物線(xiàn)唯一的交點(diǎn)為拋物線(xiàn)的頂點(diǎn)P。

  特別地,當(dāng)b=0時(shí),拋物線(xiàn)的對(duì)稱(chēng)軸是y軸(即直線(xiàn)x=0)

  頂點(diǎn)

  拋物線(xiàn)有一個(gè)頂點(diǎn)P,坐標(biāo)為P(-b/2a,4ac-b^2;)/4a)

  當(dāng)-b/2a=0時(shí),P在y軸上;當(dāng)Δ=b^2;-4ac=0時(shí),P在x軸上。

  開(kāi)口

  二次項(xiàng)系數(shù)a決定拋物線(xiàn)的開(kāi)口方向和大小。

  當(dāng)a>0時(shí),拋物線(xiàn)向上開(kāi)口;當(dāng)a<0時(shí),拋物線(xiàn)向下開(kāi)口。

  |a|越大,則拋物線(xiàn)的開(kāi)口越小。

  決定對(duì)稱(chēng)軸位置的因素

  一次項(xiàng)系數(shù)b和二次項(xiàng)系數(shù)a共同決定對(duì)稱(chēng)軸的位置。

  當(dāng)a與b同號(hào)時(shí)(即ab>0),對(duì)稱(chēng)軸在y軸左;因?yàn)槿魧?duì)稱(chēng)軸在左邊則對(duì)稱(chēng)軸小于0,也就是-b/2a<0,所以b/2a要大于0,所以a、b要同號(hào)

  當(dāng)a與b異號(hào)時(shí)(即ab<0),對(duì)稱(chēng)軸在y軸右。因?yàn)閷?duì)稱(chēng)軸在右邊則對(duì)稱(chēng)軸要大于0,也就是-b2a="">0,所以b/2a要小于0,所以a、b要異號(hào)

  可簡(jiǎn)單記憶為左同右異,即當(dāng)a與b同號(hào)時(shí)(即ab>0),對(duì)稱(chēng)軸在y軸左;當(dāng)a與b異號(hào)時(shí)(即ab<0),對(duì)稱(chēng)軸在y軸右。

  事實(shí)上,b有其自身的幾何意義:拋物線(xiàn)與y軸的交點(diǎn)處的該拋物線(xiàn)切線(xiàn)的函數(shù)解析式(一次函數(shù))的斜率k的值?赏ㄟ^(guò)對(duì)二次函數(shù)求導(dǎo)得到。

  決定拋物線(xiàn)與y軸交點(diǎn)的因素

  常數(shù)項(xiàng)c決定拋物線(xiàn)與y軸交點(diǎn)。

  拋物線(xiàn)與y軸交于(0,c)

  拋物線(xiàn)與x軸交點(diǎn)個(gè)數(shù)

  拋物線(xiàn)與x軸交點(diǎn)個(gè)數(shù)

  Δ=b^2-4ac>0時(shí),拋物線(xiàn)與x軸有2個(gè)交點(diǎn)。

  Δ=b^2-4ac=0時(shí),拋物線(xiàn)與x軸有1個(gè)交點(diǎn)。

  Δ=b^2-4ac<0時(shí),拋物線(xiàn)與x軸沒(méi)有交點(diǎn)。X的取值是虛數(shù)(x=-b±√b^2-4ac的值的相反數(shù),乘上虛數(shù)i,整個(gè)式子除以2a)

  當(dāng)a>0時(shí),函數(shù)在x=-b/2a處取得最小值f(-b/2a)=4ac-b/4a;在{x|x<-b/2a}上是減函數(shù),在{x|x>-b/2a}上是增函數(shù);拋物線(xiàn)的開(kāi)口向上;函數(shù)的值域是{y|y≥4ac-b^2/4a}相反不變

  當(dāng)b=0時(shí),拋物線(xiàn)的對(duì)稱(chēng)軸是y軸,這時(shí),函數(shù)是偶函數(shù),解析式變形為y=ax^2c(a≠0)

  特殊值的形式

  特殊值的形式

 、佼(dāng)x=1時(shí)y=abc

 、诋(dāng)x=-1時(shí)y=a-bc

 、郛(dāng)x=2時(shí)y=4a2bc

  ④當(dāng)x=-2時(shí)y=4a-2bc

  二次函數(shù)的性質(zhì)

  定義域:R

  值域:(對(duì)應(yīng)解析式,且只討論a大于0的情況,a小于0的情況請(qǐng)讀者自行推斷)

 、賉(4ac-b^2)/4a,正無(wú)窮);

 、赱t,正無(wú)窮)

  奇偶性:當(dāng)b=0時(shí)為偶函數(shù),當(dāng)b≠0時(shí)為非奇非偶函數(shù)。

  周期性:無(wú)

  解析式:

 、賧=ax^2bxc[一般式]

  ⑴a≠0

 、芶>0,則拋物線(xiàn)開(kāi)口朝上;a<0,則拋物線(xiàn)開(kāi)口朝下;

 、菢O值點(diǎn):(-b/2a,(4ac-b^2)/4a);

 、圈=b^2-4ac,Δ>0,圖象與x軸交于兩點(diǎn):

  ([-b-√Δ]/2a,0)和([-b√Δ]/2a,0);

  Δ=0,圖象與x軸交于一點(diǎn):

  (-b/2a,0);

  Δ<0,圖象與x軸無(wú)交點(diǎn);

 、趛=a(x-h)^2k[頂點(diǎn)式]

  此時(shí),對(duì)應(yīng)極值點(diǎn)為(h,k),其中h=-b/2a,k=(4ac-b^2)/4a;

 、踶=a(x-x1)(x-x2)[交點(diǎn)式(雙根式)](a≠0)

  對(duì)稱(chēng)軸X=(X1X2)/2當(dāng)a>0且X≧(X1X2)/2時(shí),Y隨X的增大而增大,當(dāng)a>0且X≦(X1X2)/2時(shí)Y隨X

  的增大而減小

  此時(shí),x1、x2即為函數(shù)與X軸的兩個(gè)交點(diǎn),將X、Y代入即可求出解析式(一般與一元二次方程連用)。

  交點(diǎn)式是Y=A(X-X1)(X-X2)知道兩個(gè)x軸交點(diǎn)和另一個(gè)點(diǎn)坐標(biāo)設(shè)交點(diǎn)式。兩交點(diǎn)X值就是相應(yīng)X1X2值。

  用函數(shù)觀(guān)點(diǎn)看一元二次方程

  如果拋物線(xiàn)與x軸有公共點(diǎn),公共點(diǎn)的橫坐標(biāo)是,那么當(dāng)時(shí),函數(shù)的值是0,因此就是方程的一個(gè)根。

  二次函數(shù)的圖象與x軸的位置關(guān)系有三種:沒(méi)有公共點(diǎn),有一個(gè)公共點(diǎn),有兩個(gè)公共點(diǎn)。這對(duì)應(yīng)著一元二次方程根的三種情況:沒(méi)有實(shí)數(shù)根,有兩個(gè)相等的實(shí)數(shù)根,有兩個(gè)不等的實(shí)數(shù)根。

  實(shí)際問(wèn)題與二次函數(shù)

  在日常生活、生產(chǎn)和科研中,求使材料最省、時(shí)間最少、效率最高等問(wèn)題,有些可歸結(jié)為求二次函數(shù)的最大值或最小值。

【初三數(shù)學(xué)二次函數(shù)知識(shí)點(diǎn)】相關(guān)文章:

中考數(shù)學(xué)復(fù)習(xí)二次函數(shù)方法08-18

中考數(shù)學(xué)函數(shù)復(fù)習(xí)知識(shí)點(diǎn)總結(jié)03-02

中學(xué)二次函數(shù)教案03-09

中考數(shù)學(xué)二次函數(shù)解題方法復(fù)習(xí)指導(dǎo)08-18

中考二次函數(shù)復(fù)習(xí)反思08-19

中考函數(shù)知識(shí)點(diǎn)復(fù)習(xí)08-18

成人高考專(zhuān)升本高等數(shù)學(xué)知識(shí)點(diǎn):函數(shù)01-11

2016年中考數(shù)學(xué)三角函數(shù)的知識(shí)點(diǎn)匯總01-23

初三化學(xué)知識(shí)點(diǎn)03-02