亚洲国产日韩欧美在线a乱码,国产精品路线1路线2路线,亚洲视频一区,精品国产自,www狠狠,国产情侣激情在线视频免费看,亚洲成年网站在线观看

淺論數(shù)學直覺思維及培養(yǎng)

時間:2020-10-03 10:58:30 數(shù)學畢業(yè)論文 我要投稿

淺論數(shù)學直覺思維及培養(yǎng)

  中學數(shù)學教學大綱(試驗修訂本)將培養(yǎng)學生的三大能力之一"邏輯思維能力"改為"思維能力",雖然只是去掉兩個字,概念的內(nèi)涵卻更加豐富,人們在的實踐中實現(xiàn)了認識上的轉變。在注重邏輯思維能力培養(yǎng)的同時,還應該注重觀察力、直覺力、想象力的培養(yǎng)。特別是直覺思維能力的培養(yǎng)由于長期得不到重視,學生在的過程中對數(shù)學的本質容易造成誤解,認為數(shù)學是枯燥乏味的;同時對數(shù)學的學習也缺乏取得成功的必要的信心,從而喪失數(shù)學學習的興趣。過多的注重邏輯思維能力的培養(yǎng),不利于思維能力的整體。培養(yǎng)直覺思維能力是發(fā)展的需要,是適應新時期社會對人才的需求。
  
  一、數(shù)學直覺概念的界定
  
  簡單的說,數(shù)學直覺是具有意識的人腦對數(shù)學對象(結構及其關系)的某種直接的領悟和洞察。
  
  對于直覺作以下說明:
  
  (1)直覺與直觀、直感的區(qū)別
  
  直觀與直感都是以真實的事物為對象,通過各種感覺器官直接獲得的感覺或感知。例如等腰三角形的兩個底角相等,兩個角相等的三角形是等腰三角形等概念、性質的界定并沒有一個嚴格的證明,只是一種直觀形象的感知。而直覺的對象則是抽象的數(shù)學結構及其關系。龐加萊說:"直覺不必建立在感覺明白之上.感覺不久便會變的無能為力。例如,我們?nèi)詿o法想象千角形,但我們能夠通過直覺一般地思考多角形,多角形把千角形作為一個特例包括進來。"由此可見直覺是一種深層次的心理活動,沒有具體的直觀形象和可操作的邏輯順序作思考的背景。正如迪瓦多內(nèi)所說:"這些富有創(chuàng)造性的家與眾不同的地方,在于他們對研究的對象有一個活全生的構想和深刻的了解,這些構想和了解結合起來,就是所謂'直覺'……,因為它適用的對象,一般說來,在我們的感官世界中是看不見的。"
  
  (2)直覺與邏輯的關系
  
  從思維方式上來看,思維可以分為邏輯思維和直覺思維。長期以來人們刻意的把兩者分離開來,其實這是一種誤解,邏輯思維與直覺思維從來就不是割離的。有一種觀點認為邏輯重于演繹,而直觀重于,從側重角度來看,此話不無道理,但側重并不等于完全,數(shù)學邏輯中是否會有直覺成分?數(shù)學直覺是否具有邏輯性?比如在日常生活中有許多說不清道不明的東西,人們對各種事件作出判斷與猜想離不開直覺,甚至可以說直覺無時無刻不在起作用。數(shù)學也是對客觀世界的反映,它是人們對生活現(xiàn)象與世界運行的秩序直覺的體現(xiàn),再以數(shù)學的形式將思考的理性過程格式化。數(shù)學最初的概念都是基于直覺,數(shù)學在一定程度上就是在解決中得到發(fā)展的,問題解決也離不開直覺,下面我們就以數(shù)學問題的證明為例,來考察直覺在證明過程中所起的作用。
  
  一個數(shù)學證明可以分解為許多基本運算或許多"演繹推理元素",一個成功的數(shù)學證明是這些基本運算或"演繹推理元素"的一個成功的組合,仿佛是一條從出發(fā)點到目的地的通道,一個個基本運算和"演繹推理元素"就是這條通道的一個個路段,當一個成功的證明擺在我們面前開始,邏輯可以幫助我們確信沿著這條路必定能順利的到達目的地,但是邏輯卻不能告訴我們,為什么這些路徑的選取與這樣的組合可以構成一條通道。事實上,出發(fā)不久就會遇上叉路口,也就是遇上了正確選擇構成通道的路段的問題。龐加萊認為,即使能復寫出一個成功的數(shù)學證明,但不知道是什么東西造成了證明的一致性,……,這些元素安置的順序比元素本身更加重要。笛卡爾認為在數(shù)學推理中的每一步,直覺力都是不可缺少的。就好似我們平時打籃球,要靠球感一樣,在快速運動中來不及去作邏輯判斷,動作只是下意識的,而下意識的動作正是在平時訓練產(chǎn)生的一種直覺。
  
  在教育過程中,老師由于把證明過程過分的嚴格化、程序化。學生只是見到一具僵硬的邏輯外殼,直覺的.光環(huán)被掩蓋住了,而把成功往往歸功于邏輯的功勞,對自己的直覺反而不覺得。學生的內(nèi)在潛能沒有被激發(fā)出來,學習的興趣沒有被調動起來,得不到思維的真正樂趣!肚嗄陥蟆吩鴪蟮溃"約30%的初中生學習了平面幾何推理之后,喪失了對數(shù)學學習的興趣",這種現(xiàn)象應該引起數(shù)學教育者的重視與反思。
  
  二、直覺思維的主要特點
  
  直覺思維具有自由性、靈活性、自發(fā)性、偶然性、不可靠性等特點,從培養(yǎng)直覺思維的必要性來看,筆者以為直覺思維有以下三個主要特點:
  
  (1)簡約性
  
  直覺思維是對思維對象從整體上考察,調動自己的全部知識經(jīng)驗,通過豐富的想象作出的敏銳而迅速的假設,猜想或判斷,它省去了一步一步分析推理的中間環(huán)節(jié),而采取了"跳躍式"的形式。它是一瞬間的思維火花,是長期積累上的一種升華,是思維者的靈感和頓悟,是思維過程的高度簡化,但是它卻清晰的觸及到事物的"本質"。
  
  (2)創(chuàng)造性
  
  社會需要創(chuàng)造性的人才,我國的教材由于長期以來借鑒國外的經(jīng)驗,過多的注重培養(yǎng)邏輯思維,培養(yǎng)的人才大多數(shù)習慣于按部就班、墨守成規(guī),缺乏創(chuàng)造能力和開拓精神。直覺思維是基于研究對象整體上的把握,不專意于細節(jié)的推敲,是思維的大手筆。正是由于思維的無意識性,它的想象才是豐富的,發(fā)散的,使人的認知結構向外無限擴展,因而具有反常的獨創(chuàng)性。
  
  伊恩.斯圖加特說:"直覺是真正的數(shù)學家賴以生存的東西",許多重大的發(fā)現(xiàn)都是基于直覺。歐幾里得幾何學的五個公設都是基于直覺,從而建立起歐幾里得幾何學這棟輝煌的大廈;哈密頓在散步的路上進發(fā)了構造四元素的火花;阿基米德在浴室里找到了辨別王冠真假的;凱庫勒發(fā)現(xiàn)苯分了環(huán)狀結構更是一個直覺思維的成功典范。
  
  (3)自信力
  
  學生對數(shù)學產(chǎn)生興趣的原因有兩種,一種是教師的人格魅力,其二是來自數(shù)學本身的魅力。不可否認情感的重要作用,但筆者的觀點是,興趣更多來自數(shù)學本身。成功可以培養(yǎng)一個人的自信,直覺發(fā)現(xiàn)伴隨著很強的"自信心"。相比其它的物資獎勵和情感激勵,這種自信更穩(wěn)定、更持久。當一個問題不用通過邏輯證明的形式而是通過自己的直覺獲得,那么成功帶給他的震撼是巨大的,內(nèi)心將會產(chǎn)生一種強大的學習鉆研動力,從而更加相信自己的能力。
  
  高斯在小學時就能解決問題"1+2+ …… +99+100=?",這是基于他對數(shù)的敏感性的超常把握,這對他一生的成功產(chǎn)生了不可磨滅的。而現(xiàn)在的中學生極少具有直覺意識,對有限的直覺也半信半疑,不能從整體上駕馭問題,也就無法形成自信。
  

 三、直覺思維的培養(yǎng)
  
  一個人的數(shù)學思維,判斷能力的高低主要取決于直覺思維能力的高低。徐利治教授指出:"數(shù)學直覺是可以后天培養(yǎng)的,實際上每個人的數(shù)學直覺也是不斷提高的。"數(shù)學直覺是可以通過訓練提高的。
  
  (!)扎實的基礎是產(chǎn)生直覺的源泉
  
  直覺不是靠"機遇",直覺的獲得雖然具有偶然性,但決不是無緣無故的憑空臆想,而是以扎實的知識為基礎。若沒有深厚的功底,是不會進發(fā)出思維的火花的。阿提雅說:"一旦你真正感到弄懂一樣東西,而且你通過大量例子以及通過與其它東兩的聯(lián)系取得了處理那個的足夠多的經(jīng)驗.對此你就會產(chǎn)生一種關于正在的過程是怎么回事以及什么結論應該是正確的直覺。"阿達瑪曾風趣的說:"難道一只猴了也能應機遇而打印成整部美國憲法嗎?"
  
  (2)滲透數(shù)學的觀點及審美觀念
  
  直覺的產(chǎn)生是基于對對象整體的把握,而哲學觀點有利于高屋建鄰的把握事物的本質。這些哲學觀點包括數(shù)學中普遍存在的對立統(tǒng)一、運動變化、相互轉化、對稱性等。例如(a+b)2= a2+2ab-b2 ,即使沒有學過完全平方公式,也可以運用對稱的觀點判斷結論的真?zhèn)巍?
  
  美感和美的意識是數(shù)學直覺的本質,提高審美能力有利于培養(yǎng)數(shù)學事物間所有存在著的和諧關系及秩序的直覺意識,審美能力越強,則數(shù)學直覺能力也越強。狄拉克于1931年從數(shù)學對稱的角度考慮,大膽的提出了反物質的假說,他認為真空中的反就是正電子。他還對麥克斯韋方程組提出質疑,他曾經(jīng)說,如果一個物理方程在數(shù)學上看上去不美,那么這個方程的正確性是可疑的。
  
  (3)重視解題教學
  
  教學中選擇適當?shù)念}目類型,有利于培養(yǎng),考察學生的直覺思維。
  
  例如選擇題,由于只要求從四個選擇支中挑選出來,省略解題過程,容許合理的猜想,有利于直覺思維的發(fā)展。實施開放性問題教學,也是培養(yǎng)直覺思維的有效。開放性問題的條件或結論不夠明確,可以從多個角度由果尋因,由因索果,提出猜想,由于答案的發(fā)散性,有利于直覺思維能力的培養(yǎng)。
  
  (4)設置直覺思維的意境和動機誘導
  
  這就要求教師轉變教學觀念,把主動權還給學生。對于學生的大膽設想給予充分肯定,對其合理成分及時給予鼓勵,愛護、扶植學生的自發(fā)性直覺思維,以免挫傷學生直覺思維的積極性和學生直覺思維的悟性。教師應及時因勢利導,解除學生心中的疑惑,使學生對自己的直覺產(chǎn)生成功的喜悅感。
  
  "跟著感覺走"是教師經(jīng)常講的一句話,其實這句話里已蘊涵著直覺思維的萌芽,只不過沒有把它上升為一種思維觀念。教師應該把直覺思維冠冕堂皇的在課堂教學中明確的提出,制定相應的活動策略,從整體上問題的特征;重視數(shù)學思維方法的教學,諸如:換元、數(shù)形結合、歸納猜想、反證法等,對滲透直覺觀念與思維能力的發(fā)展大有稗益。
  
  四、結束語
  
  直覺思維與邏輯思維同等重要,偏離任何一方都會制約一個人思維能力的發(fā)展,伊思.斯圖爾特曾經(jīng)說過這樣一句話,"數(shù)學的全部力量就在于直覺和嚴格性巧妙的結合在一起,受控制的精神和富有靈感的邏輯。"受控制的精神和富有美感的邏輯正是數(shù)學的魅力所在,也是數(shù)學者努力的方向。
  

【淺論數(shù)學直覺思維及培養(yǎng)】相關文章:

1.淺談數(shù)學直覺思維及培養(yǎng)

2.淺談數(shù)學直覺思維及其培養(yǎng)

3.淺談數(shù)學中的直覺思維與培養(yǎng)

4.淺談初中數(shù)學教學中培養(yǎng)學生直覺思維的策略

5.淺談初中數(shù)學中學生直覺思維能力的培養(yǎng)

6.淺談數(shù)學教學中培養(yǎng)學生的直覺思維能力的發(fā)展路徑

7.淺談數(shù)學思維的培養(yǎng)教學

8.淺析新課程理念下化學探究學習中直覺思維的培養(yǎng)論文

9.經(jīng)管專業(yè)經(jīng)濟直覺和數(shù)學建模能力培養(yǎng)論文