高等數(shù)學(xué)教學(xué)中Matlab軟件的運(yùn)用分析論文
數(shù)學(xué)是自然科學(xué)研究和工程技術(shù)應(yīng)用的重要工具,在理工科院校中,高等數(shù)學(xué)是一門(mén)非常重要的基礎(chǔ)課,是學(xué)生學(xué)好其他基礎(chǔ)課和專(zhuān)業(yè)課程學(xué)習(xí)的基礎(chǔ)。然而,高等數(shù)學(xué)中涉及大量的計(jì)算,學(xué)生在掌握理論知識(shí)的基礎(chǔ)上,要演算某個(gè)例題或者推算定義定理的時(shí)間較長(zhǎng)。如果學(xué)生大部分時(shí)間都花在不必要的機(jī)械性的計(jì)算上,就會(huì)忽略對(duì)定義和定理的理解。Matlab 中包括大量的函數(shù),直接調(diào)用這些函數(shù)可以方便實(shí)現(xiàn)高等數(shù)學(xué)中的極限、求導(dǎo)、積分、以及微分方程等計(jì)算問(wèn)題。Matlab 指令表達(dá)式與數(shù)學(xué)、工程中常用的形式十分相似,學(xué)生稍加理解就能上手。在教學(xué)中引入 Matlab 提高了學(xué)生運(yùn)用數(shù)學(xué)知識(shí)解決實(shí)際問(wèn)題的能力。本文以同濟(jì)大學(xué)數(shù)學(xué)系編著的《高等數(shù)學(xué)》為例,主要介紹符號(hào)計(jì)算和圖形處理功能在高等數(shù)學(xué)教學(xué)中的應(yīng)用。
1 符號(hào)計(jì)算在高等數(shù)學(xué)教學(xué)中的應(yīng)用
1.1 求極限。
高等數(shù)學(xué)教學(xué)通常會(huì)介紹等價(jià)無(wú)窮小求極限、洛必達(dá)法則求極限、兩個(gè)重要極限等方法求極限。
對(duì)理工科學(xué)生以及部分經(jīng)濟(jì)管理類(lèi)學(xué)生在極限的應(yīng)用中更關(guān)心的是所求極限的結(jié)果。這時(shí)學(xué)習(xí)一個(gè)Matlab 命令要比學(xué)習(xí)這些數(shù)學(xué)方法要快得多。
如求極限
。此題用到的是兩個(gè)重要極限求極限的方法,學(xué)生難于理解,而 matlab 命令為:
syms x
limit(((x-1)/(x+1))^x,x,inf)
回車(chē)即可返回結(jié)果:ans=exp(-2)
1.2 求積分。
高等數(shù)學(xué)求積分的內(nèi)容涉及不定積分,定積分,重積分,以及積分的應(yīng)用,但是在講不定積分、定積分內(nèi)容授課學(xué)時(shí)中 2/3 之二的時(shí)間都在介紹計(jì)算方法,包括湊微分、換元、分部積分、有理函數(shù)積分、反常積分。而 Matlab 的求積分命令只有一個(gè)卻可以解決各類(lèi)積分方法的積分求解問(wèn)題。
如求積分
。 此題用到換元的方法求解,計(jì)算比較復(fù)雜,而 matlab 命令為:
syms x
int(1/((1+x^(1/3))*sqrt(x)))
回車(chē)即可返回結(jié)果 ans=6*x^ (1/6)-6*atan(x^(1/6))
1.3 求解微分方程。
高等數(shù)學(xué)微分方程這一章主要介紹微分方程求解方法,如齊次方程,一階線性微分方程,可降階的高階微分方程,高階線性微分方程,常系數(shù)齊次和非齊次線性微分方程。 對(duì)于具體的微分方程問(wèn)題,學(xué)生往往不知道采用哪種方法去求解。Matlab微分方程求解也只有一個(gè)命令。
如求微分方程 y“=+y=xcos2x. 此方程為常系數(shù)非齊次線性微分方程,求解方法為先求得其所對(duì)應(yīng)的齊次方程的通解,再求其一個(gè)特解。計(jì)算量較大,而一個(gè)。Matlab 命令就可以解這個(gè)微分方程,并且所有的微分方程求解都用這個(gè)命令。此題 Matlab 命令為:
dsolve(‘D2y+y=x*cos(2*x)','x’)
返回結(jié)果為:ans=sin (x)*C2+cos(x)*C1+4/9*sin(2*x)-1/3*x*cos(2*x)
2 繪圖功能在高等數(shù)學(xué)教學(xué)中的應(yīng)用
Matlab 強(qiáng)大的繪圖功能可以幫助學(xué)生從直觀上理解高等數(shù)學(xué)中抽象的概念,將邏輯思維與形象思維有機(jī)的結(jié)合起來(lái)。
2.1 圖示法觀察泰勒級(jí)數(shù)和原函數(shù)的逼近。
在教學(xué)過(guò)程中,很多學(xué)生對(duì)泰勒公式的含義理解不清楚,如果引入 Matlab 中的:taylortool 通過(guò)圖形從直觀上幫助學(xué)生加深對(duì)泰勒公式的理解,加深對(duì)泰勒級(jí)數(shù)逼近函數(shù)這一思想方法的理解。
如求 y=cosx 的麥克勞林展式。在命令窗口輸入taylortool 回車(chē),打開(kāi) taylor tool 窗口,函數(shù) f(x)輸入cos(x),a 輸入 0,x 的變化范圍輸入 -2*pi,2*pi.分別給出 N=3,N=7,N=20 函數(shù)的逼近圖形。 讓學(xué)生理解,離 x=0 處越近函數(shù)的逼近效果越好,N 越大,函數(shù)逼近效果越好。
2.2 圖示法理解振蕩間斷點(diǎn)和無(wú)窮小量與有界量乘積仍是無(wú)窮小量。
函數(shù) y=sin(1/x)在 x=0 點(diǎn)處無(wú)定義,故 x=0 是間斷點(diǎn)。但如何確定函數(shù)在該點(diǎn)的間斷點(diǎn)類(lèi)型呢?這時(shí)可以借助 matlab 繪圖功能,幫助學(xué)生理解振蕩間斷點(diǎn)。
輸入:ezplot(‘sin(1/x)',[-pi,pi]) 輸出為圖 1
輸入:syms x
limit(sin(1/x),x,0)
輸出:ans =-1 . . 1
從輸出結(jié)果可以看出函數(shù)函數(shù) y=sin(1/x)在 x 趨于 0 時(shí),函數(shù) y=sin(1/x)值在 -1 和 1 之間振蕩,極限不存在,因此,x=0 稱(chēng)為振蕩間斷點(diǎn)。
先看一下函數(shù) y=xsin(1/x)的圖形:
輸入:ezplot(x*sin(1/x),[-pi,pi])
輸出為圖 2. 圖 2 表明函數(shù) y=xsin(1/x)的值不斷振蕩,但 |sin(1/x)|≤1,即 sin(1/x)在(-∞,+∞)之間是一個(gè)有界的函數(shù),并且在 x 趨于 0 時(shí),函數(shù) y=xsin(1/x)圖形離 0 的值越來(lái)越近,即趨近于 0.
再求函數(shù)在 x 趨于 0 時(shí)的極限:
輸入:syms x
limit(x*sin(1/x),x,0)
輸出: ans=0
即
通過(guò)函數(shù) y=xsin(1/x)。
的圖形和極限可以幫助學(xué)生理解無(wú)窮小量與有界量的.乘積仍為無(wú)窮小量。
2.3 圖示法理解函數(shù)用冪級(jí)數(shù)逼近和用傅立葉級(jí)數(shù)逼近的區(qū)別。
學(xué)生常常不明白函數(shù)用冪級(jí)數(shù)逼近和用傅立葉級(jí)數(shù)逼近有什么區(qū)別,若單純從理論上來(lái)分析解釋?zhuān)瑢W(xué)生是難以接受和理解,利用 matlab 軟件作圖,可以幫助學(xué)生區(qū)分二者不同,化解難點(diǎn)。
我們可以利用前文中的 y=codx 的麥克勞林展式為例,幫助學(xué)生理解,函數(shù)的冪級(jí)數(shù)逼近只在某一點(diǎn)附近的逼近效果較好。對(duì)于函數(shù)的傅立葉級(jí)數(shù)逼近,我們可以采用下面的例子:g(x)是以 2π 為周期的周期函數(shù),它在[-π,π]表達(dá)式為:
將 g(x)展開(kāi)成傅立葉級(jí)數(shù),并用 matlab 作圖,分別比較 g(x)的傅立葉級(jí)數(shù)的前 3、5、7、9 項(xiàng)與 g(x)的接近情況。程序和圖如下:
f='sign(sin(x))';
x=-3*pi:0.1:3*pi;
y1=eval(f);
plot(x,y1,'r’)
pause
hold on
for n=3:2:9
for k=1:n
bk=-2*(((-1)。^k)-1)/(k*pi);
s(k,:)=bk*sin(k*x);
end
s=sum(s);
plot(x,s)
pause
hold on
end
圖 3 的四幅圖中紅色線為 g(x)的圖形,是一方波,藍(lán)色線為展開(kāi)的 g(x)的傅立葉級(jí)數(shù)的不同項(xiàng)數(shù)的函數(shù)曲線,從圖中可以看出,n 越大,整體逼近效果越好。通過(guò) matlab 作圖幫助學(xué)生理解了和函數(shù)的冪級(jí)數(shù)逼近只在某一點(diǎn)附近的逼近效果不同,函數(shù)的傅立葉級(jí)數(shù)逼近是整體的逼近。
3 結(jié)束語(yǔ)
MATLAB 為多層次教學(xué)、演示教學(xué)、實(shí)踐教學(xué)等現(xiàn)代化教學(xué)提供了一個(gè)良好的平臺(tái),通過(guò) MAT-LAB 強(qiáng)大的符號(hào)計(jì)算功能和圖像處理功能,調(diào)動(dòng)了學(xué)生學(xué)習(xí)的積極性,起到了事半功倍的效果,真正體現(xiàn)了虛擬課堂的作用,為進(jìn)一步提高教學(xué)水平和教學(xué)質(zhì)量,推動(dòng)高等數(shù)學(xué)教學(xué)改革提供了新的思路。
參考文獻(xiàn):
〔1〕吳磊。Matlab 在《高等數(shù)學(xué)》中的應(yīng)用[J].陰 山學(xué)刊,2014,12.
〔2〕黃煒。MATLAB 在高等數(shù)學(xué)中的典型問(wèn)題應(yīng)用探索[J].江西科學(xué),2010,2.
〔3〕張國(guó)輝。Matlab 在高等數(shù)學(xué)中的應(yīng)用探析[J].當(dāng)代教育理論與實(shí)踐,2009,6.
〔4〕張棟恩,馬玉蘭,徐美萍,李雙。Matlab 高等數(shù)學(xué)實(shí)驗(yàn)[M].北京:電子工業(yè)出版社,2006.
【高等數(shù)學(xué)教學(xué)中Matlab軟件的運(yùn)用分析論文】相關(guān)文章:
1.班級(jí)公司化商務(wù)英語(yǔ)教學(xué)中的運(yùn)用論文
2.淺議英語(yǔ)辯論在商務(wù)英語(yǔ)教學(xué)中的運(yùn)用論文
3.商務(wù)英語(yǔ)談判中的語(yǔ)用策略分析論文
4.關(guān)于大學(xué)英語(yǔ)教學(xué)中的禮儀教育的分析
5.軟件測(cè)試中筆試中不可遺忘的基礎(chǔ)知識(shí)
6.中國(guó)傳統(tǒng)文化禮儀在英語(yǔ)教學(xué)的運(yùn)用論文