淺談數(shù)學思想方法的合理運用論文
論文關鍵詞:中學數(shù)學;思想方法;教學模式
論文摘要:本文首先論述了數(shù)學思想方法教學的心理學意義,然后說明了中學數(shù)學中的主要數(shù)學思想和方法,最后提出數(shù)學思想方法的教學模式。
在數(shù)學教學過程中,能否合理的運用數(shù)學思想方法,有時往往是引發(fā)學生學習積極性的關鍵。要合理利用數(shù)學思想方法教學,就必須對其有比較全面的認識。下面我就自身的幾點體會淺談一下:
一、數(shù)學思想方法教學的心理學意義
美國心理學家布魯納認為,“不論我們選教什么學科,務必使學生理解該學科的基本結(jié)構(gòu)!彼^基本結(jié)構(gòu)就是指“基本的、統(tǒng)一的觀點,或者是一般的、基本的原理。”“學習結(jié)構(gòu)就是學習事物是怎樣相互關聯(lián)的。”數(shù)學思想與方法為數(shù)學學科的一般原理的重要組成部分。下面從布魯納的基本結(jié)構(gòu)學說中來看數(shù)學思想、方法教學所具有的重要意義。
第一,“懂得基本原理使得學科更容易理解”。心理學認為,“由于認知結(jié)構(gòu)中原有的有關觀念在包攝和概括水平上高于新學習的知識,因而新知識與舊知識所構(gòu)成的這種類屬關系又可稱為下位關系,這種學習便稱為下位學習!碑攲W生掌握了一些數(shù)學思想、方法,再去學習相關的數(shù)學知識。就屬于下位學習了。下位學習所學知識“具有足夠的穩(wěn)定性,有利于牢固地固定新學習的意義,”即使新知識能夠較順利地納入到學生已有的認知結(jié)構(gòu)中去。學生學習了數(shù)學思想、方法就能夠更好地理解和掌握數(shù)學內(nèi)容。
第二,有利于記憶。布魯納認為,“除非把一件件事情放進構(gòu)造得好的模型里面,否則很快就會忘記!薄皩W習基本原理的目的,就在于保證記憶的喪失不是全部喪失,而遺留下來的東西將使我們在需要的時候得以把一件件事情重新構(gòu)思起來。高明的理論不僅是現(xiàn)在用以理解現(xiàn)象的工具,而且也是明天用以回憶那個現(xiàn)象的工具!庇纱丝梢,數(shù)學思想、方法作為數(shù)學學科的“一般原理”,在數(shù)學學習中是至關重要的。無怪乎有人認為,對于中學生“不管他們將來從事什么業(yè)務工作,唯有深深地銘刻于頭腦中的數(shù)學的精神、數(shù)學的思維方法、研究方法,卻隨時隨地發(fā)生作用,使他們受益終生! "
第三,學習基本原理有利于“原理和態(tài)度的遷移”。布魯納認為,“這種類型的遷移應該是教育過程的核心——用基本的和一般的觀念來不斷擴大和加深知識!辈懿藕步淌谝舱J為,“如果學生認知結(jié)構(gòu)中具有較高抽象、概括水平的觀念,對于新學習是有利的,”“只有概括的、鞏固的和清晰的知識才能實現(xiàn)遷移!泵绹睦韺W家賈德通過實驗證明,“學習遷移的發(fā)生應有一個先決條件,就是學生需先掌握原理,形成類比。才能遷移到具體的類似學習中!睂W生學習數(shù)學思想、方法有利于實現(xiàn)學習遷移,特別是原理和態(tài)度的遷移,從而可以較快地提高學習質(zhì)量和數(shù)學能力。
第四,強調(diào)結(jié)構(gòu)和原理的學習,“能夠縮挾‘高級’知識和‘初級’知識之間的間隙!币话愕刂v,初等數(shù)學與高等數(shù)學的界限還是比較清楚的,特別是中學數(shù)學的許多具體內(nèi)容在高等數(shù)學中不再出現(xiàn)了,有些術語如方程、函數(shù)等在高等數(shù)學中要賦予它們以新的涵義。而在高等數(shù)學中幾乎全部保留下來的只有中學數(shù)學思想和方法以及與其關系密切的內(nèi)容,如集合、對應等。因此,數(shù)學思想、方法是聯(lián)結(jié)中學數(shù)學與高等數(shù)學的一條紅線。
二、中學數(shù)學中的主要數(shù)學思想和方法
此外,符號化思想、公理化思想以及極限思想等在中學數(shù)學中也不同程度地有所體現(xiàn)。應依據(jù)具體情況在教學中予以滲透。
數(shù)學方法是分析、處理和解決數(shù)學問題的策略,這些策略與人們的數(shù)學知識,經(jīng)驗以及數(shù)學思想掌握情況密切相關。從有利于中學數(shù)學教學出發(fā),本著數(shù)量不宜過多原則。我們認為目前應予以重視的數(shù)學方法有:數(shù)學模型法、數(shù)形結(jié)合法、變換法、函數(shù)法和類分法等。一般講,中學數(shù)學中分析、處理和解決數(shù)學問題的活動是在數(shù)學思想指導下,運用數(shù)學方法,通過一系列數(shù)學技能操作來完成的。
三、數(shù)學思想方法的教學模式
數(shù)學表層知識與深層知識具有相輔相成的關系。這就決定了他們在教學中的辯證統(tǒng)一性;谏鲜稣J識,我們給出數(shù)學思想方法教學的一個教學模式:操作——掌握——領悟。
對此模式作如下說明:(1)數(shù)學思想、方法教學要求教師較好地掌握有關的深層知識,以保證在教學過程中有明確的教學目的;(2)“操作”是指表層知識教學,即基本知識與技能的教學!安僮鳌笔菙(shù)學思想、方法教學的基礎;(3)“掌握”是指在表層知識教學過程中,學生對表層知識的掌握。學生掌握了一定量的數(shù)學表層知識,是學生能夠接受相關深層知識的前提;(4)“領悟”是指在教師引導下,學生對掌握的有關表層知識的認識深化,即對蘊于其中的數(shù)學思想、方法有所悟,有所體會;(5)數(shù)學思想、方法教學是循環(huán)往復、螺旋上升的過程,往往是幾種數(shù)學思想、方法交織在一起,在教學過程中依據(jù)具體情況在一段時間內(nèi)突出滲透與明確一種數(shù)學思想或方法,效果可能更好些。
【淺談數(shù)學思想方法的合理運用論文】相關文章:
淺談物理學中的數(shù)學思想方法05-23
淺談信息技術在小學數(shù)學教學中的運用論文范本06-02
淺談數(shù)學與建筑的論文11-22
淺談論圖譜在音樂活動中的運用論文11-30