亚洲国产日韩欧美在线a乱码,国产精品路线1路线2路线,亚洲视频一区,精品国产自,www狠狠,国产情侣激情在线视频免费看,亚洲成年网站在线观看

數(shù)學(xué)小論文

時間:2020-08-25 17:38:08 數(shù)學(xué)畢業(yè)論文 我要投稿

數(shù)學(xué)小論文范例

  1證明一個三角形是直角三角形

數(shù)學(xué)小論文范例

  2用于直角三角形中的相關(guān)計算

  3有利于你記住余弦定理,它是余弦定理的一種特殊情況。中國最早的一部數(shù)學(xué)著作——《周髀算經(jīng)》的開頭,記載著一段周公向商高請教數(shù)學(xué)知識的對話:

  周公問:“我聽說您對數(shù)學(xué)非常精通,我想請教一下:天沒有梯子可以上去,地也沒法用尺子去一段一段丈量,那么怎樣才能得到關(guān)于天地得到數(shù)據(jù)呢?”

  商高回答說:“數(shù)的產(chǎn)生來源于對方和圓這些形體餓認識。其中有一條原理:當直角三角形‘矩’得到的一條直角邊‘勾’等于3,另一條直角邊‘股’等于4的時候,那么它的斜邊‘弦’就必定是5。這個原理是大禹在治水的時候就總結(jié)出來的呵。”

  從上面所引的這段對話中,我們可以清楚地看到,我國古代的人民早在幾千年以前就已經(jīng)發(fā)現(xiàn)并應(yīng)用勾股定理這一重要懂得數(shù)學(xué)原理了。稍懂平面幾何餓讀者都知道,所謂勾股定理,就是指在直角三角形中,兩條直角邊的平方和等于斜邊的平方

  用勾(a)和股(b)分別表示直角三角形得到兩條直角邊,用弦(c)來表示斜邊,則可得:

  勾2+股2=弦2

  亦即:

  a2+b2=c2

  勾股定理在西方被稱為畢達哥拉斯定理,相傳是古希臘數(shù)學(xué)家兼哲學(xué)家畢達哥拉斯于公元前550年首先發(fā)現(xiàn)的。其實,我國古代得到人民對這一數(shù)學(xué)定理的發(fā)現(xiàn)和應(yīng)用,遠比畢達哥拉斯早得多。如果說大禹治水因年代久遠而無法確切考證的`話,那么周公與商高的對話則可以確定在公元前1100年左右的西周時期,比畢達哥拉斯要早了五百多年。其中所說的勾3股4弦5,正是勾股定理的一個應(yīng)用特例(32+42=52)。所以現(xiàn)在數(shù)學(xué)界把它稱為勾股定理,應(yīng)該是非常恰當?shù)摹?/p>

  在稍后一點的《九章算術(shù)一書》中,勾股定理得到了更加規(guī)范的一般性表達。書中的《勾股章》說;“把勾和股分別自乘,然后把它們的積加起來,再進行開方,便可以得到弦!卑堰@段話列成算式,即為:

  弦=(勾2+股2)(1/2)

  即:

  c=(a2+b2)(1/2)

  定理:

  如果直角三角形兩直角邊分別為a,b,斜邊為c,那么a^平方+b^平方=c^平方;即直角三角形兩直角邊的平方和等于斜邊的平方。

  如果三角形的三條邊a,b,c滿足a^2+b^2=c^2,如:一條直角邊是3,一條直角邊是四,斜邊就是3*3+4*4=X*X,X=5。那么這個三角形是直角三角形。(稱勾股定理的逆定理)

  來源:

  畢達哥拉斯樹是一個基本的幾何定理,傳統(tǒng)上認為是由古希臘的畢達哥拉斯所證明。據(jù)說畢達哥拉斯證明了這個定理后,即斬了百頭牛作慶祝,因此又稱“百牛定理”。在中國,《周髀算經(jīng)》記載了勾股定理的一個特例,相傳是在商代由商高發(fā)現(xiàn),故又有稱之為商高定理;三國時代的趙爽對《周髀算經(jīng)》內(nèi)的勾股定理作出了詳細注釋,作為一個證明。法國和比利時稱為驢橋定理,埃及稱為埃及三角形。我國古代把直角三角形中較短得直角邊叫做勾,較長的直角邊叫做股,斜邊叫做弦。

【數(shù)學(xué)小論文范例】相關(guān)文章:

1.數(shù)學(xué)小論文

2.數(shù)學(xué)小論文600字

3.數(shù)學(xué)小論文400字

4.數(shù)學(xué)小論文15篇

5.數(shù)學(xué)小論文怎么寫

6.數(shù)學(xué)小論文小學(xué)作文

7.數(shù)學(xué)小論文寫作提綱

8.數(shù)學(xué)的小論文350字

9.物流論文提綱范例