淺析數(shù)學(xué)建模思想的建立與應(yīng)用
數(shù)學(xué)模型的應(yīng)用都是為了解決實際問題,雖然很多問題都可以通過建模的方式來解決,但是并不是所有的問題,以下是小編搜集整理的一篇探究數(shù)學(xué)建模思想的建立與應(yīng)用的論文范文,歡迎閱讀參考。
摘要:數(shù)學(xué)作為很多學(xué)科的計算工具,可以說是現(xiàn)代科學(xué)的基礎(chǔ),要想利用數(shù)學(xué)來解決實際問題,首先要建立相應(yīng)的數(shù)學(xué)模型,本文在數(shù)學(xué)建模思想概念和特點的基礎(chǔ)上,從計算機軟件、實際生活中的應(yīng)用等方面,對其應(yīng)用的發(fā)展進行了分析,最后從分析問題、建立模型、校驗?zāi)P腿齻階段,對數(shù)學(xué)建模的方法,進行了深入的研究。
關(guān)鍵詞:數(shù)學(xué)建模;思想;應(yīng)用;方法;分析
引言
隨著自然科學(xué)的發(fā)展,利用數(shù)學(xué)等思想來解決實際問題,越來越受到人們的重視,數(shù)學(xué)作為一門歷史悠久的自然科學(xué),是在實際應(yīng)用的基礎(chǔ)上發(fā)展起來,但是隨著理論研究的深入,現(xiàn)在數(shù)學(xué)理論已經(jīng)非常先進,很多理論都無法付諸實踐,在這種背景下,如何利用現(xiàn)有的數(shù)學(xué)理論來解決實際問題,成為了很多專家和學(xué)者研究的問題。通過實際的調(diào)查發(fā)現(xiàn),要想利用數(shù)學(xué)來解決實際問題,首先要建立相應(yīng)的數(shù)學(xué)模型,將實際的問題轉(zhuǎn)化成數(shù)學(xué)符號的表達方式,這樣才能夠通過數(shù)學(xué)計算,來解決一些實際問題,從某種意義上來說,計算機就是由若干個數(shù)學(xué)模型組成的,計算機軟件之所以能夠解決實際問題,就是根據(jù)實際應(yīng)用的需要,建立了一個相應(yīng)的數(shù)學(xué)模型,這樣才能夠讓計算機來解決。
1數(shù)學(xué)建模思想分析
1.1數(shù)學(xué)建模思想的概念
數(shù)學(xué)是一門歷史悠久的自然科學(xué),在古時候,由于實際應(yīng)用的需要,人們就已經(jīng)開始使用數(shù)學(xué)來解決實際問題,但是受到當(dāng)時技術(shù)條件的限制,數(shù)學(xué)理論的水平比較低,只是利用數(shù)學(xué)來進行計數(shù)等,隨著經(jīng)濟和科技水平的提高,尤其是在工業(yè)革命之后,自然科學(xué)得到了極大的發(fā)展,對于利用自然科學(xué)來解決實際問題,也成為了人們研究的重點,在市場經(jīng)濟的推動下,人們將這些理論知識轉(zhuǎn)化成為產(chǎn)品。計算機就是在這種背景下產(chǎn)生的,在數(shù)學(xué)理論的基礎(chǔ)上,將電路的通和不通兩種狀態(tài),與數(shù)學(xué)的二進制相結(jié)合,這樣就能夠讓計算機來處理實際問題,從本質(zhì)上來說,這就是數(shù)學(xué)建模思想的范疇,但是在計算機出現(xiàn)的早期,數(shù)學(xué)建模的理論還沒有形成,隨著計算機軟件技術(shù)的發(fā)展,人們逐漸的意識到數(shù)學(xué)建模的重要性,發(fā)現(xiàn)利用數(shù)學(xué)建模思想,可以解決很多實際的問題,而數(shù)學(xué)建模的概念,就是將遇到的實際問題,利用特定的數(shù)學(xué)符號進行描述,這樣實際問題就轉(zhuǎn)化為數(shù)學(xué)問題,可以利用數(shù)學(xué)的計算方法來解決。
1.2數(shù)學(xué)建模思想的特點
如何解決實際問題,從有人類文明開始,就成為了人們研究的重點,隨著自然科學(xué)的發(fā)展,出現(xiàn)了很多具體的學(xué)科,利用這些不同的學(xué)科,可以解決不同的實際問題,而數(shù)學(xué)就是其中最重要的一門學(xué)科,而且是其他學(xué)科的基礎(chǔ),如物理學(xué)科中,數(shù)學(xué)就是一個計算的工具,由此可以看出數(shù)學(xué)的重要性,進入到信息時代后,計算機得到了普及應(yīng)用,無論是日常生活中還是工作中,計算機都有非常重要的應(yīng)用,而在信息時代,注重的是解決問題的效率。與其他解決問題的方式相比,數(shù)學(xué)建模顯然更加科學(xué),現(xiàn)在數(shù)學(xué)建模已經(jīng)成為了一門獨立的學(xué)科,很多高校中都開設(shè)了這門課程,為了培養(yǎng)學(xué)生們利用數(shù)學(xué)解決實際問題的能力,我國每年都會舉辦全國性的數(shù)學(xué)建模大賽,采用開放式的參賽方式,對學(xué)生們的數(shù)學(xué)建模能力進行考驗,而大賽的題目,很多都是一些實際問題,對于比賽的結(jié)果,每個參賽隊伍的建模方式都有一定的差異,其中選出一個最有效的方式成為冠軍。由此可以看出,對于一個實際的問題,可以建立多個數(shù)學(xué)模型進行解決,但是執(zhí)行的效率具有一定的差異,如有些計算的步驟較少,而有些計算的過程比較簡單,而如何評價一個模型的效率,必須從各個方面進行綜合的考慮。
2數(shù)學(xué)建模思想的應(yīng)用
2.1計算機軟件中數(shù)學(xué)建模思想的應(yīng)用
通過深入的分析可以知道,計算機之所以能夠解決實際問題,很大程度上依賴與計算機軟件,而計算機軟件自身就是一個或幾個數(shù)學(xué)模型,在軟件開發(fā)的過程中,首先要進行需求的分析,這其實就是數(shù)學(xué)建模的第一個環(huán)節(jié),對問題進行分析,在了解到問題之后,就要通過計算機語言,對問題進行描述,而計算機語言是人與計算機進行溝通的語言,最終這些語言都要轉(zhuǎn)化成0和1二進制的方式,這樣計算機才能夠進行具體的計算。由此可以看出,計算機就是依靠數(shù)學(xué)來解決實際問題,而每個計算機軟件,都可以認為是一個數(shù)學(xué)模型,如在早期的計算機程序設(shè)計中,受到當(dāng)時計算機技術(shù)水平的限制,采用的還是低級語言,由于低級語言人們很難理解,因此在程序編寫之前,都會先建立一個數(shù)學(xué)模型,然后將這個模型轉(zhuǎn)化成相應(yīng)的計算機語言,這樣計算機就可以解決實際的問題,由于計算機能夠自行計算的特點,只要輸入相應(yīng)的參數(shù)后,就可以直接得到結(jié)果,不再需要人為的計算。
2.2數(shù)學(xué)建模思想直接解決實際問題
經(jīng)過了多年的發(fā)展,現(xiàn)在數(shù)學(xué)建模自身已經(jīng)非常完善,為了培養(yǎng)我國的數(shù)學(xué)建模人才,從1992年開始,每年我國都會舉辦一屆全國數(shù)學(xué)建模大賽,所有的高校學(xué)生都可以參加,大賽采用了開放性的參賽方式,通常情況下,對于題目設(shè)置的也比較靈活,會有多個題目提供給隊員選擇,學(xué)生可以根據(jù)自己的實際情況,來選擇一個最適合自己的問題。而數(shù)學(xué)建模大賽舉辦的主要目的,就是讓學(xué)生們掌握如何利用數(shù)學(xué)理論,來解決實際問題,在學(xué)習(xí)數(shù)學(xué)知識的過程中,很多學(xué)生會認為,數(shù)學(xué)與實踐的距離很遠,學(xué)習(xí)的都是純理論的知識,學(xué)習(xí)的興趣很低,與一些實踐密切相關(guān)的學(xué)科相比,選擇數(shù)學(xué)專業(yè)的學(xué)生很少,而數(shù)學(xué)建模的出現(xiàn),在很大程度上改善了這種情況,讓人們真正的了解數(shù)學(xué),并利用數(shù)學(xué)來解決復(fù)雜的問題。受到特殊的歷史因素影響,我國自然科學(xué)發(fā)展的起步較晚,在建國后經(jīng)歷了很長一段時間封,閉發(fā)展,與西方發(fā)達國家之間的交流比較少,因此對于數(shù)學(xué)建模等現(xiàn)代科學(xué),研究的時間比較短,導(dǎo)致目前我國很少會利用數(shù)學(xué)建模來解決實際問題,相比之下,發(fā)達國家在很多領(lǐng)域中,經(jīng)常會用到數(shù)學(xué)建模的知識,如在企業(yè)日常運營中,需要進行市場調(diào)研等工作,而對于這些調(diào)研工作的處理,在進行之前都會建立一個數(shù)學(xué)模型,然后按照這個建立的模型來處理。
2.3數(shù)學(xué)建模思想應(yīng)用的發(fā)展 從本質(zhì)上來說,數(shù)學(xué)是在實際應(yīng)用的基礎(chǔ)上,逐漸形成的一門學(xué)科,但是受到當(dāng)時技術(shù)水平的限制,雖然人們已經(jīng)懂得去計算,卻并知道自己使用的是數(shù)學(xué)知識,隨著自然科學(xué)的發(fā)展,對數(shù)學(xué)的應(yīng)用越來越多,而數(shù)學(xué)自身理論的發(fā)展速度很快,遠遠超過了實際應(yīng)用的范圍,同時隨著其他學(xué)科的發(fā)展,數(shù)學(xué)變成了一種計算的工具,因此數(shù)學(xué)應(yīng)用的第一個階段中,主要是作為一種工具。隨著電子計算機的出現(xiàn),對數(shù)學(xué)的應(yīng)用達到了一個極限,人們在數(shù)學(xué)和物理的基礎(chǔ)上,制作出了能夠自動計算的機器,在計算機出現(xiàn)的早期,受到性能和體積上的限制,只能進行一些簡單的數(shù)學(xué)計算,還不能解決實際的問題,但是計算機語言和軟件技術(shù)的發(fā)展,使其在很多領(lǐng)域得到了應(yīng)用,在計算的基礎(chǔ)上,能夠解決很多問題,而軟件程序的開發(fā),其實就是建立數(shù)學(xué)模型的過程,由此可以看出,數(shù)學(xué)建模思想應(yīng)用的第二階段中,主要是以現(xiàn)代計算機等電子設(shè)備的方式,來解決實際的問題。
3數(shù)學(xué)建模思想應(yīng)用的方法
3.1分析問題
數(shù)學(xué)模型的應(yīng)用都是為了解決實際問題,雖然很多問題都可以通過建模的方式來解決,但是并不是所有的問題,因此在遇到實際問題時,首先要對問題進行具體的分析,首先就是看是否能夠轉(zhuǎn)化成數(shù)學(xué)符號,如果能夠直接用數(shù)學(xué)語言來進行描述,那么就可以容易的建立相應(yīng)的數(shù)學(xué)模型,但是通過實際的調(diào)查發(fā)現(xiàn),隨著經(jīng)濟和科技的發(fā)展,遇到的問題越來越復(fù)雜,其中很多都無法直接用數(shù)學(xué)語言來描述,這就增加了數(shù)學(xué)建模的難度。由此可以看出,分析問題作為數(shù)學(xué)建模的第一個環(huán)節(jié),也是最重要的一個環(huán)節(jié),如果問題分析的不夠具體,那么將無法建立出數(shù)學(xué)模型,同時對數(shù)學(xué)模型的建立也具有非常重要的影響,通過實際的調(diào)查發(fā)現(xiàn),能夠建立高效率的數(shù)學(xué)模型,都是對問題分析的比較徹底,甚至有些獨特的理解,只有這樣才能夠采用建立一個最簡單的模型,而隨著數(shù)學(xué)建模自身的發(fā)展,現(xiàn)在建立模型的過程中,對于一個實際的問題,經(jīng)常需要建立多個模型,這樣通過多個數(shù)學(xué)模型協(xié)同來解決一個問題。
3.2數(shù)學(xué)模型的建立
在分析實際問題后,就要用數(shù)學(xué)符號來描述要解決的問題,這是建立數(shù)學(xué)模型的準備環(huán)節(jié),要想利用數(shù)學(xué)來解決實際問題,無論采用哪種方式,都要轉(zhuǎn)化成數(shù)學(xué)語言,然后才能夠通過計算的方式解決,而數(shù)學(xué)模型的過程,就是在描述完成后,建立相應(yīng)的數(shù)學(xué)表達式,通常情況下,在分析問題時,都能夠發(fā)現(xiàn)某種內(nèi)在的規(guī)律,這個規(guī)律是數(shù)學(xué)建模的.基礎(chǔ)。如果無法找到這個規(guī)律,顯然就不能利用現(xiàn)有的一些數(shù)學(xué)定律,從而建立相應(yīng)的表達式,最后解決相應(yīng)的問題,由此可以看出,分析問題的內(nèi)在規(guī)律,是影響數(shù)學(xué)建模的重要因素,而這個規(guī)律的發(fā)現(xiàn),除了在現(xiàn)有的數(shù)學(xué)知識外,也可以結(jié)合其他學(xué)科的知識,尤其是現(xiàn)在遇到的問題越來越復(fù)雜,對于以往簡單的問題,只需要建立一個簡單的模型即可解決,而現(xiàn)在復(fù)雜的問題,經(jīng)常需要建立多個模型。因此現(xiàn)在數(shù)學(xué)建模的難度越來越大,從近些年全國數(shù)學(xué)建模大賽的題目就可以看出,對于問題的描述越來越模糊,甚至出現(xiàn)了一些歷史上的難題,而不同學(xué)生根據(jù)自己的理解,建立的模型也具有很大的差異,其中一些模型非常新穎,為實際問題的解決提供了良好的參考,目前我國對數(shù)學(xué)建模的研究有限,尤其是與西方發(fā)達國家相比,實踐的機會還比較少。
3.3數(shù)學(xué)模型的校驗
在數(shù)學(xué)模型建立之后,對于這個模型是否能夠解決實際問題,具體的執(zhí)行效率如何,都需要進行校驗,因此檢驗是數(shù)學(xué)模型建立最后的一個環(huán)節(jié),也是非常重要的一個步驟,通常情況下,經(jīng)過校驗都能夠發(fā)現(xiàn)模型中存在的一些問題,從而進行完善,這樣才能夠保證嚴謹性,在實際校驗的過程中,要對數(shù)學(xué)模型的每個部分進行驗證,通過輸入特定的數(shù)據(jù),看得到的結(jié)果是否符合理論值,如果沒有問題,就說明該模型可以解決實際問題。除了檢驗?zāi)P偷臏蚀_外,校驗還有另外一個作用,就是優(yōu)化模型,在選定數(shù)據(jù)后,能夠看到數(shù)學(xué)模型計算的整個過程,這時就可以對具體的細節(jié)進行優(yōu)化,如哪部分可以減少計算的步驟,或者簡化計算的方式等,這樣可以使整個模型更加科學(xué)、合理,由此可以看出,校驗工作對于數(shù)學(xué)模型的建立,具有非常重要的意義。
4 結(jié)語
通過全文的分析可以知道,對于數(shù)學(xué)理論的應(yīng)用,從很久之前就已經(jīng)開始了,但是數(shù)學(xué)建模思想的出現(xiàn),卻是隨著計算機技術(shù)的發(fā)展,逐漸形成的一門學(xué)科,電子計算機的出現(xiàn),在很大程度上改變了處理事情的方式,利用計算機軟件,只要輸入相應(yīng)的參數(shù),就可以直接得到結(jié)果,這正是數(shù)學(xué)模型完成的任務(wù),只是計算機的出現(xiàn),省略了中間的計算過程,因此計算機軟件的方式,是數(shù)學(xué)建模思想最好的應(yīng)用方法,要想解決不同的問題,只要建立不同的模型,然后編寫相應(yīng)的程序。
參考文獻:
[1] 吳俊,勞家仁.高校師資管理中數(shù)學(xué)建模的應(yīng)用研究[J],南京工業(yè)職業(yè)技術(shù)學(xué)院學(xué)報,2009(02):84-86
[2] 溫清芳,最優(yōu)化方法在數(shù)學(xué)建模中的應(yīng)用[J],寧德師專學(xué)報(自然科學(xué)版),2007(02):151-153
[3] 張紹艷,淺談數(shù)學(xué)建模思想的應(yīng)用[J],科技咨詢導(dǎo)報,2007(20):233
[4] 馬南湘,數(shù)學(xué)建模與企業(yè)生產(chǎn)中的數(shù)學(xué)建模應(yīng)用[J],沿海企業(yè)與科技,2003(05):36-37
[5] 楊俊萍,數(shù)學(xué)建模在高等數(shù)學(xué)教學(xué)中的滲透[J],山西煤炭管理干部學(xué)院學(xué)報,2008(02):51+29
【淺析數(shù)學(xué)建模思想的建立與應(yīng)用】相關(guān)文章:
1.中職數(shù)學(xué)教學(xué)中建模思想的應(yīng)用論文
2.方程在數(shù)學(xué)建模中的思想及應(yīng)用論文
3.淺談中職學(xué)生數(shù)學(xué)建模思想研究
4.淺談經(jīng)濟問題中的數(shù)學(xué)建模應(yīng)用
5.談職高數(shù)學(xué)教學(xué)與數(shù)學(xué)建模論文
6.概率統(tǒng)計教學(xué)及數(shù)學(xué)建模思想的融入論文
7.高等數(shù)學(xué)教學(xué)中滲透數(shù)學(xué)建模思想的適時性論文