- 相關(guān)推薦
關(guān)于整數(shù)的Li表示式的研究
關(guān)于整數(shù)的Li表示式的研究
摘要
整數(shù)的表示方法有很多,有10進(jìn)制表示形式,帶余形式,本論文研究了整數(shù)的li表示法,對(duì)于這種表示方法進(jìn)行了初步的研究.在賴(lài)以明,賴(lài)君利,賴(lài)君良的書(shū)中提出了整數(shù)g 的li表示式,在此前提下我們對(duì)整數(shù)的li表示式的存在性命題進(jìn)行了補(bǔ)充并給予了證明,并給出了整數(shù)g的li表示式的應(yīng)用.經(jīng)過(guò)系統(tǒng)地分析,得到了下面結(jié)論:設(shè)n是正整數(shù),n>1,若非0整數(shù)g 是奇數(shù)而非素?cái)?shù)a1的倍數(shù),c=a1a2a3…an.則g有且只有如下的表示式: g=l1-kc 其中,k為整數(shù),l1∈L1,且l1<c.
關(guān)鍵詞: 素?cái)?shù); 整數(shù)的Li 表示式; 賴(lài)集.
The Research of Integer Li expression
ABSTRACT
There are many methods of integer representation , such as the form of decimal bases, the form of belt-odd .This paper has studied the integer li representation and has conducted the preliminary research regarding this method of representation. In the good book proposed the li expression of integer g ,under this premise we carry on studying the proposition of the existence of integer li expression and has given the proof, and has produced the application of li expression of integer g. After systematically analyzing ,we obtained the conclusion: Supposes n is the positive integer, n>1. If not zero integer g is the odd number but the non- a1 multiple, c=a1a2a3… an. then g only has the following expression: g=l1-kc, k is the integer, l1∈ L1, also l1<c
key words: Prime number; Integer Li expression; LaiJi.
【整數(shù)的Li表示式的研究】相關(guān)文章:
初中藝術(shù)校本課程“模塊”式教學(xué)研究05-14
基于價(jià)值網(wǎng)的企業(yè)集群式供給鏈治理模式研究04-28
課題研究開(kāi)題報(bào)告10-26
舞蹈藝術(shù)的特征研究10-26
文學(xué)鑒賞研究論文11-03
單位自首的處罰研究06-13
定向增發(fā)機(jī)制研究06-03
刑罰裁量的原則研究06-04
研究生開(kāi)題報(bào)告06-29