亚洲国产日韩欧美在线a乱码,国产精品路线1路线2路线,亚洲视频一区,精品国产自,www狠狠,国产情侣激情在线视频免费看,亚洲成年网站在线观看

數(shù)學(xué)畢業(yè)論文-切比雪夫不等式的推廣與應(yīng)用

時(shí)間:2023-03-04 16:48:00 數(shù)學(xué)畢業(yè)論文 我要投稿
  • 相關(guān)推薦

數(shù)學(xué)畢業(yè)論文-切比雪夫不等式的推廣與應(yīng)用

 

數(shù)學(xué)畢業(yè)論文-切比雪夫不等式的推廣與應(yīng)用

切比雪夫不等式的推廣與應(yīng)用

摘要:在估計(jì)某些事件的概率的上下界時(shí),常用到著名的切比雪夫不等式.本文從4個(gè)方面對(duì)切比雪夫不等式進(jìn)行推廣,討論了切比雪夫不等式在8個(gè)方面的應(yīng)用,并證明了隨機(jī)變量序列服從大數(shù)定理的1個(gè)充分條件.最后給出了切比雪夫不等式其等號(hào)成立的充要條件,并用現(xiàn)代概率方法重新證明了切比雪夫不等式.

關(guān)鍵詞:切比雪夫不等式;隨機(jī)變量序列;強(qiáng)大數(shù)定理;幾乎處處收斂;大數(shù)定理.
                      
The Popularization and Application of Chebyster’s Inequality

Abstract:The famous Chebyshev’s Inequality is usually used when estimating the boundary from above or below of probability . The paper presents popularization from four respects. First, the paper discusses its application in eight aspects and demonstrates a complete condition that the foundation of random number sequence coconforms to he Law of Large Numbers  theorem. And then , the author analyzes its complete and necessary condition for foundation of Chebyshev’s Ineuquality. Furthermore, the paper makes a demonstration again for Chebyshev’s Inequality with the method of modern probability.

Key words: Cherbyshev’ Inequality; Random number sequence; Law of Large Numbers; Almost Everywhere Convergence;Law of Strong Large Numbers.

目 錄

中文標(biāo)題……………………………………………………………………………………………1
中文摘要、關(guān)鍵詞…………………………………………………………………………………1
英文標(biāo)題……………………………………………………………………………………………1
英文摘要、關(guān)鍵詞…………………………………………………………………………………1
正文
§1 引言……………………………………………………………………………………………2
§2切比雪夫不等式的推廣 ………………………………………………………………………2
§3切比雪夫不等式的應(yīng)用 ………………………………………………………………………5
3.1 利用切比雪夫不等式說(shuō)明方差的意義………………………………………………………5
3.2 估計(jì)事件的概率………………………………………………………………………………5
3.3  說(shuō)明隨機(jī)變量取值偏離EX超過(guò)3 的概率很小 ……………………………………………7
3.4 求解或證明有關(guān)概率不等式…………………………………………………………………7
3.5 求隨機(jī)變量序列依概率的收斂值……………………………………………………………9
3.6 證明大數(shù)定理…………………………………………………………………………………11
3.7 證明強(qiáng)大數(shù)定理………………………………………………………………………………12
3.8 證明隨機(jī)變量服從大數(shù)定理的1個(gè)充分條件………………………………………………20
§4切比雪夫不等式等號(hào)成立的充要條件 ………………………………………………………22
§5 結(jié)束語(yǔ)…………………………………………………………………………………………25
參考文獻(xiàn)……………………………………………………………………………………………26
致謝…………………………………………………………………………………………………27


【包括:畢業(yè)論文、開(kāi)題報(bào)告、任務(wù)書(shū)】

【說(shuō)明:論文中有些數(shù)學(xué)符號(hào)是編輯器編輯而成,網(wǎng)頁(yè)上無(wú)法顯示或者顯示格式錯(cuò)誤,給您帶來(lái)不便請(qǐng)諒解!

 

【數(shù)學(xué)畢業(yè)論文-切比雪夫不等式的推廣與應(yīng)用】相關(guān)文章:

計(jì)算機(jī)應(yīng)用畢業(yè)論文11-03

數(shù)學(xué)畢業(yè)論文(精選13篇)08-11

數(shù)學(xué)的畢業(yè)論文范文09-23

數(shù)學(xué)畢業(yè)論文答辯問(wèn)題匯總04-13

感悟數(shù)學(xué)之美畢業(yè)論文(精選11篇)06-28

畢業(yè)論文提綱07-21

畢業(yè)論文提綱07-21

畢業(yè)論文致謝09-14

建筑畢業(yè)論文09-03

大型購(gòu)物中心管理信息系統(tǒng)的設(shè)計(jì)與應(yīng)用會(huì)計(jì)畢業(yè)論文06-01