- 相關(guān)推薦
如何培養(yǎng)學(xué)生在數(shù)學(xué)教學(xué)中的解題能力
摘要:教學(xué)關(guān)鍵是教會學(xué)生用所學(xué)的知識解決實際問題,即要提高學(xué)生的解題能力。文章從培養(yǎng)學(xué)生“數(shù)形”整合、“方程”思維、“對應(yīng)”思維、“轉(zhuǎn)化”能力、增強自信等五個方面談如何培養(yǎng)學(xué)生的數(shù)學(xué)解題能力。
關(guān)鍵詞:培養(yǎng)學(xué)生;數(shù)學(xué)教學(xué);解題能力;轉(zhuǎn)化能力
Abstract: The teaching key is the knowledge solution actual problem which the church student uses to study, namely must sharpen student’s problem solving ability. The article from trains the student “the number shape” the conformity, “the equation” the thought that “the correspondence” the thought that “the transformation” ability, the enhancement self-confidently and so on five aspects to discuss how to raise student’s mathematics problem solving ability.
key word: Trains the student; Mathematics teaching; Problem solving ability; Transformed ability
前 言
中學(xué)數(shù)學(xué)教學(xué)的目的,歸根結(jié)底在于培養(yǎng)學(xué)生的解題能力,提高數(shù)學(xué)解題能力是數(shù)學(xué)教學(xué)中一項十分重要的任務(wù)。提高學(xué)生解題能力始終貫穿于教學(xué)始終,我們必須把它放在十分重要的位置。那么,如何才能提高學(xué)生的解題能力,具體方法上講主要可以從以下幾方面入手:
一、培養(yǎng)“數(shù)形”結(jié)合的能力
“數(shù)”與“形”無處不在。任何事物,剝?nèi)ニ馁|(zhì)的方面,只剩下形狀和大小兩個屬性,就交給了教學(xué)去研究了。初中數(shù)學(xué)兩個分支——代數(shù)和幾何,代數(shù)是研究“數(shù)”的,幾何是研究“形”的。但是研究代數(shù)要借助“形”,研究幾何要借助“數(shù)”,“數(shù)形整合”是一種趨勢,越學(xué)下去,“數(shù)”與“形”越密不可分。到了高中就出現(xiàn)了專門用代數(shù)方法研究幾何問題的一門課,叫做“解析幾何”。在初二建立平面直角坐標系后,研究函數(shù)的問題就離不開圖像了。往往借助圖像能使問題明朗化,比較容易找到問題的關(guān)鍵所在,從而解決問題。在今后的數(shù)學(xué)學(xué)習(xí)中,要重視“數(shù)形結(jié)合”的思維訓(xùn)練,任何一道題,只要與“形”沾上了一點邊,就應(yīng)該根據(jù)題意畫出草圖來分析一番。這樣做,不但直觀,而且全面,整體性強,容易找出切入點,對解題大有益處。嘗到甜頭的人就會慢慢養(yǎng)成一種“數(shù)形結(jié)合”的好習(xí)慣。
二、培養(yǎng)“方程”的思維能力
數(shù)學(xué)是研究事物的空間形式和數(shù)量關(guān)系的,最重要的數(shù)量關(guān)系是等量關(guān)系,其次是不等量關(guān)系。最常見的等量關(guān)系就是“方程”。比如等速運動中,路程、速度和時間三者之間就有一種等量關(guān)系,可以建立一個相關(guān)的等式:速度ⅹ時間=路程,在這樣的等式中,一般會有已知量,也有未知量,像這樣含有未知量的等式就是“方程”,而通過方程里的已知量求出未知量的過程就是解方程。我們在小學(xué)就已經(jīng)接觸過簡易方程,而初一則比較系統(tǒng)地學(xué)習(xí)解一元一次方程,并總結(jié)出解一元一次方程的五個步驟。如果學(xué)會并掌握了這五個步驟,任何一元一次方程都能順利地解出來。初二、初三我們還將學(xué)習(xí)解一元二次方程、二元二次方程組、分式方程,到了高中我們還將學(xué)習(xí)指數(shù)方程、對數(shù)方程、線性方程、參數(shù)方程、極坐標方程等。解這些方程的思維幾乎一致,都是通過一定的方法將它們轉(zhuǎn)化一元一次方程或是一元二次方程的形式,然后用大家熟悉的解一元一次方程的五個步驟或者解一元二次方程的求根公式加以解決。物理中的能量守恒,化學(xué)中的化學(xué)平衡式,現(xiàn)實中的大量實際運用,都需要建立方程,通過解方程來求出結(jié)果。因此同學(xué)們一定要將解一元一次方程和解一元二次方程學(xué)好,進而學(xué)好其它形式的方程。所謂的“議程”思維就是對于數(shù)學(xué)問題,特別是現(xiàn)實當中碰到的未知量和已知量的錯綜復(fù)雜的關(guān)系,善于用“方程”的觀點去構(gòu)建有關(guān)的方程,進而用解方程的方法去解決它。
三、培養(yǎng)學(xué)生數(shù)學(xué)“轉(zhuǎn)化”思維能力
解數(shù)學(xué)題最根本的途徑是“化難為易,化繁為簡,化未知為已知”,也就是把復(fù)雜繁難的數(shù)學(xué)問題通過一定的數(shù)學(xué)思維、方法和手段,逐漸將它轉(zhuǎn)變?yōu)橐粋大家熟知的簡單的數(shù)學(xué)形式,然后通過大家所熟悉的數(shù)學(xué)運算把它解決。比如,我們學(xué)校要擴大校園面積,需要向鎮(zhèn)上征地。鎮(zhèn)上給了一塊形狀不規(guī)則的地,如何丈量的它的面積呢?首先使用小平板儀(有條件的話,可使用水準儀或經(jīng)緯儀)依據(jù)一定的比例,將實際地形繪制成紙上圖形,然后將紙上圖形分割成若干塊梯形、長方形、三角形,利用學(xué)過的面積計算方法,計算出這些圖形的面積之和,也就得到了這塊不規(guī)則地形的總面積。在這里,我們把無法計算的不規(guī)則圖形轉(zhuǎn)化成了可以計算的規(guī)則圖形,從而解決了土地丈量問題。另外,我們前面提到的各種多元方程、高次方程,利用“消元”、“降次”等方法,最終都可以把它們轉(zhuǎn)化為一元一次方程或一元二次方程,然后用已知的步驟或公式把它們解決。“轉(zhuǎn)化”的思想,是解題最重要的思維習(xí)慣。面對難題,面對沒有見過的題,首先就要想到轉(zhuǎn)化,也總是能夠轉(zhuǎn)化的。平時,要多留心老師是怎樣解題的,是怎樣“化難為易,化繁為簡,化未知為已知”的。同學(xué)之間也應(yīng)多交流交流成功轉(zhuǎn)化的體會,深入理解轉(zhuǎn)化的真正含義,切實掌握轉(zhuǎn)化的思維和技巧。
四、培養(yǎng)“對應(yīng)”的思維能力
“對應(yīng)”的思想由來已久,比如我們將一支鉛筆、一本書、一棟房子對應(yīng)一個抽象的數(shù)“1”,將兩只眼睛、一對耳環(huán)、雙胞胎對應(yīng)一個抽象的數(shù)“2”。隨著學(xué)習(xí)的深入,我們將對應(yīng)擴展到對應(yīng)一種關(guān)系、對應(yīng)一種形式等等。比如我們在計算或化簡中,將對應(yīng)公式的左邊X,對應(yīng)A;Y對應(yīng)B;再利用公式的右邊直接得出原式的結(jié)果。這就是運用“對應(yīng)”的思想和方法來解題。初二初三我們將看到數(shù)軸上的點與實數(shù)之間的一一對應(yīng),直角坐標平面上的點與一對有序?qū)崝?shù)之間的一一對應(yīng),函數(shù)與其圖象之間的對應(yīng)。“對應(yīng)”思想在今后的學(xué)習(xí)中將會發(fā)生越來越大的作用。
五、增強自信是解題的關(guān)鍵
自信才能自強,在考試中,總是看到有些同學(xué)的試卷出現(xiàn)許多空白,有好多題根本沒有動手去做。俗話說,藝高膽大,(轉(zhuǎn)上頁)(接下頁)藝不高就膽不大。但是做不出是一回事,沒有去做又是另一回事。稍微難一點的數(shù)學(xué)題都不是一眼就能看出它的解法和結(jié)果的。要去分析、探索、比比畫畫、寫寫算算,經(jīng)過迂回曲折的推理或演算,才能顯現(xiàn)出條件和結(jié)論之間的某種聯(lián)系,整個思路才會明朗清晰起來。沒有動手去做,又怎么知道自己不會做呢?即使是老師,拿到一道難題,也不能立即答復(fù)你。也
同樣要去分析研究,找到正確的思路后才能講授。不敢去做稍微復(fù)雜一點的題(不一定是難題,有些題只不過是敘述多一點),是缺乏自信心的表現(xiàn)。在數(shù)學(xué)解題中,自信心是相當重要的。要相信自己,只要不超出自己的知識范疇,不管哪道題,總是能用自己所學(xué)過的知識把它解出來。要敢于去做題,要善于去做題。這就叫做在“在戰(zhàn)略上藐視敵人,在戰(zhàn)術(shù)上重視敵人”。具體解題時,一定要認真審題,緊緊抓住題目的所有條件不放,不要忽略了任何一個條件。一道題和一類題之間有一定的共性,可以想想這一類題的一般思路和一般解法,但更重要的是抓住這一道題的特殊性。抓住這一道題與這一類題不同的地方,數(shù)學(xué)題幾乎沒有相同的,總有一個或幾個條件不相同,因此思路和解題過程也不盡相同。有些同學(xué)老師講過的題會做,其他題就不會做,只會依樣畫瓢,題目有些小的變化就無從下手。當然做題先從哪兒下手是一件棘手的事,不一定找得準。但是,做題一定要抓住其特殊性則絕對沒錯。選擇一個或幾個條件作為解題的突破口,看由這個條件能得出什么,得出的越多越好,然后從中選擇其它條件有關(guān)的,進行推算或演算。一般難題都有多種解法,條條大道通羅馬。要相信利用這道題的條件,加上自己學(xué)過的那些知識,一定能推出正確的結(jié)論。數(shù)學(xué)題目是無限的,但數(shù)學(xué)的思想和方法卻是有限的。我們只要學(xué)好了有關(guān)的基礎(chǔ)知識,掌握了必要的數(shù)學(xué)思想和方法,就能順利地對付那無限的題目。題目并不是做得越多越好,題海無邊,總也做不完。關(guān)鍵在于你有沒有培養(yǎng)起良好的數(shù)學(xué)思維習(xí)慣,有沒有掌握正確的數(shù)學(xué)解題方法。當然,題目做得多也有若干好處:一是熟能生巧,加快速度,節(jié)省時間,這一點在考試中時間有限制時顯得尤為重要;二是利用做題來鞏固、記憶所學(xué)的定義、定理、法則、公式,形成良性循環(huán)。解題需要豐富的知識,更需要自信心。沒有自信心就會畏難,就會放棄。只有自信才能勇往直前,才不會輕言放棄,才會加倍努力地學(xué)習(xí),才有希望攻克難關(guān),迎來屬于自己的春天。
【如何培養(yǎng)學(xué)生在數(shù)學(xué)教學(xué)中的解題能力】相關(guān)文章:
如何培植學(xué)生在數(shù)學(xué)教學(xué)中的解題能力03-23
如何在語文教學(xué)中培養(yǎng)學(xué)生的能力12-13
淺議如何在高職數(shù)學(xué)教學(xué)中培養(yǎng)學(xué)生的學(xué)習(xí)能力12-04
數(shù)學(xué)教學(xué)中對學(xué)生思維能力的培養(yǎng)03-14
淺析在英語教學(xué)中如何培養(yǎng)學(xué)生創(chuàng)新能力03-19
英語教學(xué)中如何培養(yǎng)學(xué)生的思維能力03-16